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Abstract— The human brain cortical layer has a convoluted
morphology that is unique to each individual. Characterization
of the cortical morphology is necessary in longitudinal studies of
structural brain change, as well as in discriminating individuals
in health and disease. A method for encoding the cortical
morphology in the form of a graph is presented. The design of
graphs that encode the global cerebral hemisphere cortices as
well as localized cortical regions is proposed. Spectral metrics
derived from these graphs are then studied and proposed as
descriptors of cortical morphology. As proof-of-concept of their
applicability in characterizing cortical morphology, the metrics
are studied in the context of hemispheric asymmetry as well as
gender dependent discrimination of cortical morphology.

I. INTRODUCTION

The conventional approach for characterization of brain
morphology and study of its changes is to quantify the
volumes of a set of brain structures [1]. Cortical thickness
measures are also popular means for characterizing mor-
phology [2]. As volume and cortical thickness measures
are incapable of capturing the full anatomical information,
anatomical shape descriptors [3], [4] have been proposed
to provide significant complementary informative representa-
tion of brain morphology. For example in [5], it was shown
that shape descriptors of cortical and an ensemble of sub-
cortical structures provide a powerful means to discriminate
individuals based on their age, sex and neurodegenerative
disorder. These shape descriptors use triangular surface mesh
or tetrahedral volume tessellation constructions of brain
structures, and exploit eigenfunctions of the LaplaceBeltrami
operator [6].

Here we build on these works in several respects. Firstly,
we use voxel-based graph designs. That is, we use the
volumetric voxel representation of the 3D structure of the
cortical ribbon, and construct a graph with vertices associated
to individual voxels, and connectivities defined based on
geodesic adjacencies; designs of graphs based on a similar
encoding of gray matter include, subject-specific designs
of cerebral [7] and cerebellar [8] cortices and group-based
template designs [9], but these graphs were leveraged for
analysis of fMRI data rather than shape characterization.
Secondly, we encode and exploit morphological information
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of an ensemble of localized cortical regions as opposed to
using shape descriptors of the global cortical structure. This
is done by designing graphs that encode localized cortical
regions. Thirdly, we propose the use of shape descriptors
across different spectral bands in contrast to using exact
graph Laplacian eigenvalues.

II. METHODS

A. Graphs and Their Spectra

An undirected, unweighted graph G = (V, E , A) consists
of a set V of Ng := |V| vertices, a set E of edges (i.e.,
pairs (i, j) where i, j ∈ V), which can be fully described
by an adajcency matrix A with elements Ai,j equal to 1 if
if (i, j) ∈ E , and 0, if otherwise.

Using A, the graph diagonal, degree matrix D is defined
with elements Di,i =

∑
j Ai,j , and the graph’s normalized

Laplacian matrix L is defined as

L = I −D−1/2AD−1/2. (1)

Since L is symmetric and positive semi-definite, it can be
diagonalized as L = ΣΛΣT , where Σ = [χ

1
|χ

2
| · · · |χ

Ng
], is

an orthonormal matrix containing a set of Ng eigenvectors
{χ

k
}Ng

k=1, and Λ is a diagonal matrix whose entries equal
the associated real, non-negative eigenvalues that define the
graph spectrum S as

S = diag(Λ) = {0 = λ1 ≤ λ2 ≤ · · · ≤ λNg
≤ 2}. (2)

Unlike classical Euclidean domain spectrum, each graph
has a unique definition of spectrum, with a unique range
[0, λNg

] and a unique set of irregularly spaced eigenvalues
with possibility of multiplicity greater than one.

B. Cerebral Hemisphere Cortex Graphs

1) Global Cerebral Hemisphere Cortex (GCHC) Graphs:
For a given hemisphere, a graph that encodes its cortical
topology is designed. Cortical ribbons extracted using the
FreeSurfer software package [10] serve as the base of the
design. Voxels within the cortical ribbon are treated as graph
vertices. Graph edges are defined based on 26-neighborhood
connectivity of voxels in 3D space. Two vertices are con-
nected through an edge if they lie within each-other’s 26-
neighborhood. Due to limited voxel resolution, edges derived
merely based on Euclidean adjacency may include spurious
connections that are not anatomically justifiable, for instance,
at touching banks of sulci. By exploiting pial surface extrac-
tions, such anatomically unjustifiable connections, i.e. graph
edges, are pruned out. No weight is assigned to the edges.
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2) Cortical Parcellation: A hemisphere is parcellated into
a set of regions of approximately equal volume. For satisfy-
ing equality of regional volumes, the number of regions may
slightly vary between hemispheres depending on the level of
volumetric asymmetry. The parcellation is performed using
spectral clustering [11], and graph partitioner Chaco [12]
is leveraged for a computationally efficient implementation.
Specifically, to parcel the left/right hemisphere in to P
parcels, initially, a set of vectors are defined by sampling
the first P Laplacian eigenvectors of the associated GHCH
graph as

yi = [χ
1
[i], χ

2
[i], . . . , χ

P
[i]], i = 1, . . . , N (l)

g , (3)

where N
(l)
g denotes the number of vertices of the GHCH

graph. Vectors {yi}
N(l)

g

i=1 are then clustered with the k-
means algorithm in to N graph vertex clusters {Cj ⊂
{1, . . . , N (l)

g }}Pj=1, where C1 ∪ C2 ∪ · · · CP =

{1, . . . , N (l)
g }. Voxels associated to each vertex cluster Ci

are then treated as a single parcel, resulting in N localized
cortical parcels within the hemisphere.

It is worth noting that in the present work the number of
parcels is defined based on a specified desired resolution
for the parcels across hemispheres and subjects. In other
words, rather than parcellating different hemispheres all in
to a fixed number of parcels, we instead keep the parcel size
fix, thus allowing some variation in the number of parcels
across hemispheres and subjects.

3) Localized Cerebral Hemisphere Cortex (LCHC)
Graphs: A graph is designed for each cortical cluster,
which we denote as localized cerebral hemisphere cortex
(LCHC) graph. The vertex set of a LCHC graph associated
to cluster i consists of voxels that lie within the associated
vertex cluster Ci, and the edge set is defined based on the
same neighbourhood connectivity principle and pruning
approach as that explained in constructing GCHC graphs; in
practice, the A matrices of LCHC graphs can be extracted
from the A matrix of their associated GCHC graph.

C. Spectral characterization of cortical graphs

In the following, we define a set of spectral graph metrics
that quantify morphological information across the Laplacian
spectra of GHCH graphs and LCHC graphs.

1) Spectral metric for GCHC graphs: Given N subjects,
let Sn, n = 1, . . . , N , denote the spectrum of the GCHC
graph of the left/right hemisphere of subject n. At a given
spectral band, denoted α − β where α ∈ [0, 2), β ∈ (0, 2]
and α < β, a spectral metric is defined on the GCHC graph
as

Θα−β
n = |sα−βn |, (4)

where | · | denotes set cardinality and set sα−βn is given as

sα−βn =

{
{λ ∈ Sn| α ≤ λ ≤ β}, α = 0,

{λ ∈ Sn| α < λ ≤ β}, otherwise.
(5)

GCHC graphs, at 1 milimeter cubic resolution as presented
in this work, have approximately 300 K vertices. Direct

computation of sα−βn is thus computationally cumbersome
as it requires deriving exact eigenvalues of the L matrix.
In particular, to compute sα−βn at different spectral bands
spanning the entire spectrum, a full eigendecomposition of
matrix L is needed, which is practically infeasible. In this
work, for GCHC graphs, we compute their exact spectra
within [0, 0.1], i.e., lower 5% spectral tail, and use an
approximation scheme to estimate the number of eigenvalues
that fall within spectral bands at upper parts of the spectra.

The approximation is performed using the spectrum slicing
method [13, Section 3.3], which has also been previously
used in [14] for approximating graph spectra. Specifically,
the number of eigenvalues of L that fall below a given
α ∈ [0, 2) can be computed as follows. Firstly, a triangular
factorization of matrix L− αI is performed, i.e., L− αI =
Π∆ΠT , where Π is a lower triangular matrix and ∆ is
a diagonal matrix. Secondly, by invoking a corollary of
Sylvesters law of inertia, it holds that the number of negative
eigenvalues of ∆, denoted Nα, is equal to the number of
negative eigenvalues of L−αI , and thus equal to the number
of eigenvalues of L less than α. Similarly, the number of
eigenvalues of L that fall below a given β ∈ (0, 2], β > α,
denoted Nβ , can be estimated. An approximation of sα−βn is
thus given by Nβ −Nα.

2) Spectral metric for LCHC graphs: Assume the
left/right hemisphere of subject n being parcellated, at a
desired resolution, in to Kn parcels, thus, resulting in a set
of Kn LCHC graphs. Let Sn,k, k = 1, . . . ,Kn, denote the
Laplacian spectrum of the k-th LCHC graph of subject n.
At a given spectral band, denoted α − β where α ∈ [0, 2),
β ∈ (0, 2] and α < β, a spectral metric is defined on the set
of LCHC graphs as

θα−βn =
1

Kn

Kn∑
k=1

|sα−βn,k |, n = 1 . . . , N, (6)

where set sα−βn,k is given as

sα−βn,k =

{
{λ ∈ Sn,k| α ≤ λ ≤ β}, α = 0,

{λ ∈ Sn,k| α < λ ≤ β}, otherwise.
(7)

It is worth noting that
∑Kn

k=1 s
α−β
n,k is generally not equal to

sα−βn , nor is {Sn,1∪Sn,2∪ · · ·∪Sn,Kn} equal to Sn, as has
been empirically observed, consistently, across our analysis.
This observation provides intuition showing that the spectra
of LCHC graphs can be seen as a novel decomposition of the
single spectrum of the associated GCHC graph, such that the
unity of the LCHC graph spectra is not equal to the single
GCHC graph spectrum. Detailed theoretical analysis of this
property is deferred to future work.

D. Statistical analysis of variations in cortical morphology

In the following, results from hypothesis tests on i) left-
right hemisphere asymmetry and ii) hemispheric morpholog-
ical differences between gender are presented. The primary
objective with these tests is to study the variability of the
proposed spectral metrics Θα−β

n and θα−βn,k , across various
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Fig. 1: Parcellated right hemisphere of six subjects from the HCP
database, one subject per column, at two resolutions; 40± 2 and
63 ± 3 parcels in the top and bottom rows, respectively. Slices
are shown along the same MNI coordinate, at 1 mm3 voxel
resolution. Volumes of cortical regions in each hemisphere are
equal, and are approximately equal across subjects; top row:
8000 (8K) voxels, bottom row: 5000 (5K) voxels. The first three
subjects are females and the second three are males. The use of
color is to distinguish adjacent parcels and there is no link
between parcels of identical color across subjects and resolutions.

spectral bands and parcellation resolutions. We report p-
values that result from the tests as a means to study the
variations. We do not aim to attach any tag of significance to
the findings, and as such, uncorrected p-values are reported.1

III. RESULTS

The analyses were performed on a subset of subjects from
the Human Connectome Project [15] database, consisting of
75 female and 75 male subjects, all within the age group
of 31-35 years. The female and male subject subsets were
selected objectively based on the numerical ordering of HCP
subject identifiers, starting from smallest identifiers. Fig. 1
shows the right hemispheres of 6 of the subjects, where
the first three subjects are females and the second three
are males; cortical parcellations obtained using the scheme
described in Section II-B.2 are also illustrated.

A. Graph spectral markers of hemispheric asymmetry

Variations in the cortical morphology between left and
right hemisphere have been numerously reported in literature,
see for example [16]. Wilcoxon rank-sum test analysis was
performed on the group of left and right hemispheres,
implemented separately for each gender to prevent bias. The
tests were performed on Θα−β

n and θα−βn,k metrics across
different spectral bands. Table I summarizes the resulting
statistical p-values. P-values obtained from tests on Θα−β

n are
lower than corresponding ones obtained from test on θα−βn ,
across different parcellation resolutions, excluding the first
spectral band. This suggests the superiority of GCHC graphs
in encoding hemispheric asymmetry over LCHC graphs.

1Yet, it should be noted that a large extent of the p-values would survive
even a strict Bonferroni correction for the number of spectral bands studied.

Spectral Local Graphs Global

Band 5K 6K 7K 8K 9K 10K Graphs

0 – 0.1 0.1102 0.1351 0.0500 0.0802 0.1458 0.1902 0.4179
0.1 – 0.2 0.0971 0.1396 0.0527 0.0577 0.1796 0.1960 0.0320
0.2 – 0.3 0.2107 0.4136 0.0985 0.1896 0.6185 0.9880 0.0012
0.3 – 0.4 0.3435 0.9640 0.3571 0.5058 0.7881 0.4511 4.8 ×10−4

0.4 – 0.5 0.8983 0.5413 0.5627 0.7224 0.5798 0.0594 4.9 ×10−4

0.5 – 0.6 0.8318 0.6903 0.3551 0.7852 0.4009 0.0650 3.7 ×10−4

0.6 – 0.7 0.1527 0.9281 0.1381 0.4158 0.9236 0.2635 6.8 ×10−4

0.7 – 0.8 0.0432 0.5602 0.0694 0.1689 0.8318 0.4288 7.1 ×10−4

0.8 – 0.9 0.0350 0.3801 0.0610 0.2627 0.6264 0.3863 0.0014
0.9 – 1 0.9356 0.3650 0.9461 0.7042 0.4009 0.0666 0.0015
1 – 1.1 0.3229 0.0754 0.3822 0.3192 0.1044 0.0153 7 ×10−4

1.1 – 1.2 0.0155 0.1036 0.0112 0.0360 0.2013 0.5767 0.0025
1.2 – 1.3 0.0237 0.1852 0.0104 0.0430 0.3397 0.9341 0.0017
1.3 – 1.4 0.1411 0.1463 0.0584 0.0821 0.2524 0.2926 0.0220
1.4 – 1.5 0.0197 0.0221 0.0409 0.0103 0.0300 0.0147 0.0010
1.5 – 1.6 2.3 ×10−7 8.2 ×10−6 1.2 ×10−8 5 ×10−8 1.3 ×10−7 7.3 ×10−9 3.8 ×10−9

1.6 – 1.7 0.0112 9.6 ×10−4 1.6 ×10−4 0.0012 0.0025 1.4 ×10−4 1 ×10−5

1.7 – 1.8 0.0017 0.0124 0.0013 6.8 ×10−5 0.0180 4 ×10−4 1.2 ×10−4

1.8 – 1.9 0.5537 0.3065 0.3386 0.3348 0.0324 0.1797 0.0694
1.9 – 2 0.2311 0.9179 0.1056 0.7198 0.7172 0.0684 0.4057

TABLE I: Hemispheric asymmetry. P-values from Wilcoxon
rank-sum tests on sets i) {θα−βn }n=1,...,75 for the left hemispheres
of the male group, and ii) {θα−βn }n=1,...,75 for the right
hemispheres of the male group, across different spectral bands
and parcellation resolutions. Similarly, the last column shows
p-values from Wilcoxon rank-sum tests on sets i)
{Θα−β

n }n=1,...,75 for the left hemispheres of the male group, and
ii) {Θα−β

n }n=1,...,75 for the right hemispheres of the male group.
The same tests performed on the female group led to similar
results; results not presented due to limit of space.

Interestingly, this observation may be related to the strong
fronto-occipital asymmetry pattern in cortical thickness as
reported in [16], which itself has been suggested to be related
to the Yakovlevian torque, an overall hemispheric twist
giving rise to the frontal and occipital petalia. That is, eigen-
vectors that encode the global structure of the hemisphere,
i.e., eigenvectors of GCHC graphs, can better capture this
elongated pattern of asymmetry compared to eigenvectors
which have localized support, i.e., those of LCHC graphs.
Fig. 2 shows eigenvectors of the Laplacian matrices of three
LCHC graphs and the associated GCHC graph. Eigenvectors
associated to smaller eigenvalues represent slower spatial
harmonics, whereas those associated to higher eigenvalues,
encode more subtle spatial patterns.

The results further show that both metrics Θα−β
n,k and

θα−βn,k exhibit particularly significant variation between left
and right hemispheres within spectral range [1.4, 1.8]. More-
over, at spectral band [0, 0.1], p-values associated to LCHC
graphs show lower values than those associated to the GCHC
graph. Fig. 3 provides visual intuition on distribution of
eigenvalues at 10 sub-bands within spectral band [0, 0.1].
At each of the 10 narrow sub-bands, a greater extent of
spectral variation is observed across LCHC graphs compared
to the associated GCHC graph. This observation, together
with noting that eigenvectors associated to the lower end of
the spectrum provide more information on the macro-scale
structure of cortical hemispheres, suggests further scrutiny of
spectral band [0, 0.1]. Wilcoxon rank-sum tests analyses were
then performed on these 10 sub-bands, see Table II. Results
show that a greater level of hemispheric asymmetry can be
manifested at a number of these narrow spectral bands; see
underlined values in Table II.

B. Cortical graph spectral markers of gender

Variations in the cortical morphology of male and female
subjects have been suggested in many studies, see for ex-
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Fig. 2: Eigenvectors of the GCHC graph and three LCHC graphs
associated to the right hemisphere of subject S1, cf. Fig. 1,
overlaid on the cortical ribbon shown in gray. Note that the
eigenvectors are defined in 3D space whereas only a single axial
slice of them is shown, which limits manifesting their full spatial
variation. Eigenvectors of LCHC graphs better capture localized
morphological variations, whereas those of the GCHC graph
better capture global topological variations.

Spectral Local Graphs Global

Band 5K 6K 7K 8K 9K 10K Graphs

0 – 0.1 0.1102 0.1351 0.0500 0.0802 0.1458 0.1902 0.4179

0 – 0.01 0.3229 0.4670 0.3210 0.5538 0.2290 0.9730 0.4800
0.01 – 0.02 0.1153 0.4821 0.1004 0.0317 0.3415 0.0633 0.4590
0.02 – 0.03 0.4705 0.0149 0.0429 0.2297 0.2092 0.3302 0.7420
0.03 – 0.04 0.0059 0.5388 0.0202 0.1499 0.2275 0.4774 0.3270
0.04 – 0.05 0.5526 0.3425 0.2508 0.2225 0.0586 0.0679 0.6280
0.05 – 0.06 0.2823 0.0291 0.2386 0.0173 0.2462 0.9745 0.9520
0.06 – 0.07 0.0312 0.3065 0.0337 0.2363 0.2106 0.0237 0.0770
0.07 – 0.08 0.1270 0.1080 0.4211 0.2492 0.1421 0.8760 0.3756
0.08 – 0.09 0.6384 0.8539 0.1973 0.0424 0.4844 0.0738 0.4780
0.09 – 0.1 0.0947 0.3110 0.0291 0.1473 0.0437 0.5626 0.3596

TABLE II: Same as in Table I but on a set of narrower spectral
bands spanning spectral range [0, 0.1]; results on spectral band 0
– 0.1 replicated from Table I. Tests that led to p-values lower than
that obtained on corresponding tests at spectral band [0, 0.1] are
underlined.

ample [17]. Wilcoxon rank-sum test analysis was performed
on the groups of male and females subjects. The test was
implemented separately for each hemisphere to prevent bias
due to hemispheric asymmetry. The tests were performed
on metrics Θα−β

n and θα−βn,k across different spectral bands.
The resulting p-values are shown in Table III. All tests on
θα−βn,k led to lower p-values relative to the associated test
on Θα−β

n , suggesting the superiority of LCHC graphs over
GCHC graphs in collectively providing a more discriminative
encoding of cortical morphology across gender. Interestingly,
this result is in contrast to that observed on tests of hemi-
spheric asymmetry where the global metric Θα−β

n was found
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Fig. 3: (a)-(d) Distribution of graph Laplacian eigenvalues in the
lower-end spectra of cerebral hemisphere cortex graphs: (a)
GCHC graphs associated to the six right hemispheres shown in
Fig. 1. (b) GCHC graph and the three LCHC graphs associated to
the hemisphere shown in Fig. 2. The black bars in (b) are
obtained by dividing the black bars in (a) by the number of local
graphs in the hemisphere, N = 42. (c) 42 LCHC graphs
associated to the hemisphere shown in Fig. 2. (d) The same as in
(c) but for the subject’s left hemisphere, N = 41. In (b)-(d), local
graphs have size 8K.

to provide better discrimination. This observation can be
interpreted as that discrimination of gender is best exhibited
as regional variations in cortical morphology rather than as
global hemispheric variations.

With similar reasoning as that provided in Section III-A,
the tests were also performed at narrow spectral bands in the
lower-end of the spectra. The results are shown in Table IV.
Table III, all tests led to significant p-values. In contrast
to tests on hemispheric asymmetry, these tests on gender
variation at narrow spectral bands in the lower end of the
spectra resulted in few lower p-values than that obtained on
the spectral band [0, 0.1]; see underlined values in Table IV.

IV. CONCLUSIONS

The design of cerebral cortical graphs, consisting of
global hemisphere graphs and localized cortical graphs,
was presented. Global hemisphere graphs encode the global
topology cerebral hemisphere cortices, whereas local cortical
graphs capture more subtle localized variations in cortical
morphology. The set of spectra of local cortical graphs can be
seen as an implicit decomposition of the single spectrum of
the associated global hemisphere graph. Experimental results
suggest the benefit of spectral features of cortical graphs
as a powerful means for discriminative characterization of
cortical morphology in relation to gender. Our future work
will focus on testing the proposed cortical graph features
on a larger cohort of healthy as well as patient subjects.
Characterization and early detection of changes in cortical
morphology that arise in various types of dementia [18],
[19], in particular, Alzheimer’s disease, will be explored.
The proposed cortical graphs can also be found applicable
for graph spectral processing of functional MRI data, see for
example [9], in particular, through exploiting novel spectral
graph filter design algorithms [20] that allow adaptation to
both cortical structure as well as graph spectral content [21]
of cortical activity.
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Left Hemisphere Right Hemisphere

Spectral Local Graphs Global Local Graphs Global

Band 5K 6K 7K 8K 9K 10K Graphs 5K 6K 7K 8K 9K 10K Graphs

0 – 0.1 7.3 ×10−14 4.8 ×10−14 5.3 ×10−14 7.1 ×10−13 1 ×10−13 1.1 ×10−12 2 ×10−9 1.4 ×10−12 8.5 ×10−13 5.3 ×10−13 7.9 ×10−13 6.1 ×10−12 6.3 ×10−13 7.2 ×10−10

0.1 – 0.2 9.5 ×10−14 6.6 ×10−14 4 ×10−13 2 ×10−12 2.4 ×10−13 3.7 ×10−12 4.4 × 10−4 8.3 ×10−12 2 ×10−12 1.2 ×10−12 3.9 ×10−12 3.7 ×10−11 4.7 ×10−12 7.3 ×10−5

0.2 – 0.3 7.8 ×10−12 9.7 ×10−12 1.5 ×10−11 4.6 ×10−9 3.8 ×10−10 1.1 ×10−7 0.9371 7.1 ×10−9 3 ×10−10 2.9 ×10−10 2.2 ×10−8 2.2 ×10−8 3 ×10−9 0.8553
0.3 – 0.4 7×10−4 6.8 ×10−4 4.2 ×10−5 0.0208 0.0137 0.0101 0.0098 2.1 ×10−4 1.2 ×10−5 1.1 ×10−4 0.0587 4.8 ×10−4 0.0188 0.0311
0.4 – 0.5 0.1210 0.0361 0.0044 0.8216 0.3165 0.4613 6.4 × 10−4 0.4556 0.0308 0.0869 0.5896 0.0264 0.1796 0.0055
0.5 – 0.6 0.0337 0.0214 0.0031 0.5376 0.3650 0.3956 0.0012 0.0070 0.0081 0.0074 0.6506 0.0095 0.0978 0.0063
0.6 – 0.7 4 ×10−6 3.3 ×10−4 4.5 ×10−6 0.0316 0.0126 0.0287 0.0036 7 ×10−4 7.9 ×10−5 0.0017 0.1442 0.0031 0.0164 0.0121
0.7 – 0.8 1.1 ×10−5 2 ×10−4 1.4 ×10−5 0.0430 0.0232 0.0562 0.0022 0.0013 9.3 ×10−6 8.6 ×10−4 0.2073 0.0020 0.0300 0.0092
0.8 – 0.9 8 ×10−4 0.0023 1.9 ×10−4 0.2799 0.0805 0.1473 0.0016 0.0150 7.3 ×10−4 0.0027 0.3591 0.0077 0.0511 0.0073

0.9 – 1 1.1 ×10−8 5.5 ×10−8 1.8 ×10−6 4.4 ×10−8 1.3 ×10−5 3.8 ×10−7 6.8 ×10−6 2.3 ×10−9 1.3 ×10−6 4.7 ×10−6 1 ×10−6 1.1 ×10−5 1.7 ×10−5 7.7 ×10−5

1 – 1.1 2.9 ×10−10 1.5 ×10−9 1.3 ×10−8 2.1 ×10−9 5.5 ×10−7 7.6 ×10−9 1.7 ×10−6 2.1 ×10−10 1.3 ×10−7 4.3 ×10−7 8.9 ×10−8 6.6 ×10−7 1.9 ×10−6 3.1 ×10−5

1.1 – 1.2 5.5 ×10−13 3.9 ×10−12 6.7 ×10−12 4.6 ×10−9 1.3 ×10−9 9.6 ×10−8 0.2824 7.8 ×10−10 1.1 ×10−11 1 ×10−10 9.8 ×10−9 2.6 ×10−8 1.3 ×10−8 0.4354
1.2 – 1.3 8.3 ×10−11 8.7 ×10−10 3.3 ×10−10 8.5 ×10−7 1.4 ×10−6 1.4 ×10−5 0.0641 7.3 ×10−9 2.2 ×10−10 5.1 ×10−9 6.1 ×10−6 2.3 ×10−7 1.2 ×10−6 0.1463
1.3 – 1.4 7.1 ×10−14 3.1 ×10−14 1.5 ×10−13 1.3 ×10−12 2.1 ×10−13 5.2 ×10−12 9 ×10−4 4.3 ×10−12 5.8 ×10−13 5.2 ×10−13 2.1 ×10−12 2.2 ×10−11 1.2 ×10−12 8.8 ×10−5

1.4 – 1.5 1.4 ×10−8 4.2 ×10−9 4.1 ×10−9 2.4 ×10−9 4.4 ×10−9 7.8 ×10−9 7.7 ×10−9 6.9 ×10−8 1.8 ×10−6 1.2 ×10−7 3.6 ×10−7 7.1 ×10−7 3 ×10−7 6.3 ×10−7

1.5 – 1.6 0.0080 0.0354 0.0071 0.0021 0.0149 0.0279 0.0517 0.0100 0.0461 0.0026 0.0372 0.0561 0.1446 0.0482
1.6 – 1.7 0.0274 0.0208 0.0286 0.0073 0.1634 0.1553 0.0070 0.1370 0.1880 0.0596 0.0381 0.0829 0.0525 0.0234
1.7 – 1.8 0.6470 0.5400 0.3630 0.5600 0.3569 0.6562 0.7728 0.0340 0.1089 0.0816 0.0817 0.5801 0.1973 0.3025
1.8 – 1.9 0.0953 0.0274 0.8330 0.4340 0.2237 0.3012 0.1161 0.7029 0.4842 0.7187 0.3276 0.0756 0.4850 0.5930

1.9 – 2 0.2130 0.6999 0.6520 0.6490 0.5055 0.2219 0.1936 0.0883 0.8214 0.0323 0.3098 0.2761 0.7508 0.5836

TABLE III: Validation of LCHC and GCHC graph spectral metrics for discrimination of gender. P-values from Wilcoxon rank-sum
tests on {θα−βn }n=1,...,75 on groups: i) the set of 75 left/right hemispheres of the male group, and ii) the set of 75 left/right hemispheres
of the female group, are presented. Similarly, p-values from Wilcoxon rank-sum tests on {Θα−β

n }n=1,...,75 on the same two groups are
also presented. For both LCHC and GCHC graphs, tests were performed across different spectral bands, and for the LCHC graphs, also
across different parcellation resolutions.

Left Hemisphere Right Hemisphere

Spectral Local Graphs Global Local Graphs Global

Band 5K 6K 7K 8K 9K 10K Graphs 5K 6K 7K 8K 9K 10K Graphs

0 – 0.1 7.3 ×10−14 4.8 ×10−14 5.3 ×10−14 7.1 ×10−13 1 ×10−13 1.1 ×10−12 2 ×10−9 1.4 ×10−12 8.5 ×10−13 5.3 ×10−13 7.9 ×10−13 6.1 ×10−12 6.3 ×10−13 7.2 ×10−10

0 – 0.01 3.5 ×10−12 4.3 ×10−12 1.8 ×10−11 3.4 ×10−10 2.1 ×10−12 4.5 ×10−11 3.1 ×10−10 2.4 ×10−11 2.6 ×10−11 1.3 ×10−11 1.9 ×10−12 4.2 ×10−10 7.2 ×10−13 6.1 ×10−9

0.01 – 0.02 6.4 ×10−12 3.5 ×10−10 3.1 ×10−12 3.2 ×10−13 1.7 ×10−12 1.8 ×10−10 1.7 ×10−8 2.1 ×10−10 1.1 ×10−10 1.8 ×10−12 1.3 ×10−9 6 ×10−13 6.6 ×10−10 2.6 ×10−10

0.02 – 0.03 1.3 ×10−9 1.8 ×10−13 9 ×10−11 1.2 ×10−10 2.4 ×10−11 1 ×10−11 1.1 ×10−9 4.5 ×10−11 2.7 ×10−10 6.6 ×10−10 5.3 ×10−12 3.6 ×10−11 2 ×10−12 5.6 ×10−9

0.03 – 0.04 7.6 ×10−12 7.1 ×10−11 3.1 ×10−13 3.7 ×10−10 4.6 ×10−11 4.1 ×10−10 2.8 ×10−9 5.3 ×10−11 1.3 ×10−10 4.5 ×10−10 4.9 ×10−10 7.5 ×10−11 5.8 ×10−11 4.4 ×10−10

0.04 – 0.05 2.7 ×10−10 7.2 ×10−9 2.1 ×10−10 4.2 ×10−10 1.3 ×10−11 4.8 ×10−11 5.1 ×10−8 3.9 ×10−8 3.3 ×10−11 5.1 ×10−10 3.8 ×10−11 8 ×10−9 2.4 ×10−11 1.8 ×10−9

0.05 – 0.06 3.6 ×10−10 2.2 ×10−12 2 ×10−9 4.2 ×10−12 8.5 ×10−11 1.6 ×10−10 1.1 ×10−8 3.6 ×10−11 1.1 ×10−9 2.3 ×10−13 7.8 ×10−8 1.1 ×10−11 1.3 ×10−12 1.3 ×10−7

0.06 – 0.07 3 ×10−9 1.1 ×10−10 5.5 ×10−12 8.1 ×10−10 4.7 ×10−10 4.2 ×10−10 5.4 ×10−7 4.1 ×10−7 4.3 ×10−11 1.2 ×10−8 4.2 ×10−11 3.5 ×10−9 1.6 ×10−8 1.2 ×10−8

0.07 – 0.08 2.6 ×10−13 8 ×10−11 1.4 ×10−8 2.4 ×10−10 3.5 ×10−10 6.3 ×10−9 4.8 ×10−8 5.8 ×10−10 1.4 ×10−8 4.3 ×10−11 4 ×10−9 2 ×10−10 6.9 ×10−9 3.3 ×10−8

0.08 – 0.09 6.1 ×10−8 1.3 ×10−8 1.1 ×10−9 2.3 ×10−9 2.9 ×10−12 1.8 ×10−11 3.7 ×10−7 5.5 ×10−9 8.8 ×10−11 1.5 ×10−9 8 ×10−10 5.2 ×10−10 2.8 ×10−12 3.9 ×10−7

0.09 – 0.1 1.3 ×10−9 3.5 ×10−7 2.8 ×10−13 3.1 ×10−9 1.6 ×10−9 4.5 ×10−9 1.5 ×10−7 1.2 ×10−8 7.3 ×10−8 2.4 ×10−9 1.7 ×10−11 6.4 ×10−9 3.6 ×10−10 4.4 ×10−8

TABLE IV: Same as in Table III but on a set of narrower spectral bands spanning spectral range [0, 0.1]; results on spectral band 0 –
0.1 replicated from Table III. Values lower than that obtained on corresponding tests at spectral band [0, 0.1] are underlined.

and infarction in the framingham heart study: establishing what is
normal,” Neurobiol. Aging, vol. 26, no. 4, pp. 491–510, 2005.

[2] B. Fischl and A. Dale, “Measuring the thickness of the human
cerebral cortex from magnetic resonance images,” Proc. Natl Acad.
Sci., vol. 97, no. 20, pp. 11 050–11 055, 2000.

[3] E. Gerardin, G. Chételat, M. Chupin, R. Cuingnet, B. Desgranges,
H. Kim, M. Niethammer, B. Dubois, S. Lehéricy, L. Garnero, et al.,
“Multidimensional classification of hippocampal shape features dis-
criminates Alzheimer’s disease and mild cognitive impairment from
normal aging,” Neuroimage, vol. 47, no. 4, pp. 1476–1486, 2009.
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