
Chapter 1
Spectral Design of Signal-Adapted Tight Frames
on Graphs

Hamid Behjat and Dimitri Van De Ville

Abstract Analysis of signals defined on complex topologies modeled by graphs
is a topic of increasing interest. Signal decomposition plays a crucial role in the
representation and processing of such information, in particular, to process graph
signals based on notions of scale (e.g., coarse to fine). The graph spectrum is more
irregular than for conventional domains; i.e., it is influenced by graph topology, and,
therefore, assumptions about spectral representations of graph signals are not easy to
make. Here, we propose a tight frame design that is adapted to the graph Laplacian
spectral content of a given class of graph signals. The design exploits the ensemble
energy spectral density, a notion of spectral content of the given signal set that we
determine either directly using the graph Fourier transform or indirectly through
approximation using a decomposition scheme. The approximation scheme has the
benefit that (i) it does not require diagonalization of the Laplacian matrix, and (ii)
it leads to a smooth estimate of the spectral content. A prototype system of spectral
kernels each capturing an equal amount of energy is defined. The prototype design
is then warped using the signal set’s ensemble energy spectral density such that the
resulting subbands each capture an equal amount of ensemble energy. This approach
accounts at the same time for graph topology and signal features, and it provides a
meaningful interpretation of subbands in terms of coarse-to-fine representations.

1.1 Introduction

Many fields of science rely on network analysis to study complex systems. Net-
works are modeled mathematically as weighted graphs that have a set of nodes
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(vertices) with interactions between them represented by connections (links) and
associated strengths. A rich repertoire of methods have been developed to pursue
original queries and integrate the complexity of network structure into the analy-
sis, subsequently providing new interpretations of datasets in divers scientific disci-
plines ranging from social sciences to physics and biology. One of the successes in
network analysis is the ability to identify sets of nodes based on their connectivity.
Traditional graph partitioning goes back to optimizing graph cuts [14], while more
recent community detection identifies sets of nodes that are more densely connected
inside the set than outside [17]. Community detection has been widely applied and
many variants of the corresponding optimization criterion have been proposed [31].

Another significant trend in the field is the emergence of methods to process
signals on graphs [32, 41, 38, 7]. Measurements on the nodes of a given network
can be considered as graph signals for which classical signal processing operations
can be generalized; e.g., how to properly denoise, filter, or transform graph signals
by taking into account the underlying connectivity. Many generalization schemes
have been proposed to extend classical multi-resolution transforms, filter bank de-
signs and dictionary constructions to the graph setting. These studies fall essentially
within two families: spatial (vertex) and spectral (frequency) designs. Schemes that
fall within the former family include methods in designing wavelets for hierarchi-
cal trees [34, 35, 16] and methods based on lifting schemes [22, 29, 36]. The latter
family is based on spectral graph theory [8], which is a powerful approach based
on the eigendecomposition of matrices associated with graphs such as the adja-
cency matrix or graph Laplacian. Its strength originates from the global nature of
the eigenvectors that summarize key graph properties and can be used to solve con-
vex relaxed versions of graph cut minimization [50], or to define signal-processing
operations by a graph equivalent of the Fourier transform [41, 38]. In its application
to graph signal processing, operations are performed in the spectral domain using
graph spectral filters. One of the first proposals is the spectral graph wavelet trans-
form (SGWT) frame [20] that is constructed based on a system of scaled cubic spline
spectral kernels together with a lowpass spectral polynomial kernel. Moreover, var-
ious constructions of systems of spectral graph kernels leading to tight frames were
proposed in [26, 18, 13]. Tight frames are particularly interesting because of their
property of energy conservation between the original and transformed domain [5].
Other approaches to spectral domain design include diffusion wavelets [10], vertex-
frequency frames [42, 44] and approaches to graph filter-bank design using bipartite
graph decompositions [30, 45, 46, 37], connected sub-graph decomposition [48],
graph coloring [40] and Slepian functions that provide a tradeoff between temporal
and spectral energy concentration [49].

One of the difficulties of the graph spectrum is that its construction depends on
the graph itself. Consequently, the graph spectral representation of a graph signal is
determined by both the domain and the signal. However, the aforementioned spec-
tral designs typically define spectral windows in a way that is independent of the
graph and graph signal. One example of adaptation to the spectral properties of
the graph domain was recently proposed in [43] for the construction of spectrum-
adapted tight graph wavelet and vertex-frequency frames. The spectrum-adapted
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kernels account for the non-uniform distribution of Laplacian eigenvalues, and are
designed such that that a similar number of eigenvalues falls within the support
of each spectral kernel. Moreover, in [47, 51], numerical dictionary learning ap-
proaches have been proposed in which dictionaries are learnt based on a set of train-
ing signals. In these design, the learned kernels are indirectly adapted to the graph
Laplacian spectrum as well as to the training data since the graph structure is incor-
porated into the learning process. In an application specific approach, in [3, 1, 2], the
Meyer-like frame design [26] has been tailored to the spectral content of functional
MRI signals to obtain a set of narrow-support kernels covering the lower end of the
spectrum.

In this chapter, we propose an approach for constructing tight graph frames that
account not only for the intrinsic topological structure of the underlying graph as
proposed in [43], but also for the characteristics of a given set of signals. This is
accomplished by considering a graph-based energy spectral density notion that in-
cludes signal and topology properties and encodes the energy-wise significance of
the graph eigenvalues. A system of spectral kernels tailored to the energy spectral
density is constructed by starting from the design of a prototype Meyer-type tight
frame with uniform spectral coverage, followed by a warping step which incorpo-
rates the energy spectral density information to the prototype design, resulting in a
tight frame with equi-energy subbands.

1.2 Preliminaries

1.2.1 Graphs and Spectral Graph Theory

A graph can be denoted as G = (V,E) with Ng vertices in set V , a set of edges as
tuples (i, j) in E where i, j ∈ V . The size of the graph is the number of vertices. In
this chapter we only consider undirected graphs without self-loops. Algebraically,
G can be represented with the node-to-node adjacency matrix A, with elements ai, j
denoting the weight of the edge (i, j) if (i, j) ∈ E; ai, j = 0 if (i, j) /∈ E. The degree
matrix D of G is diagonal with elements di,i = ∑ j ai, j. The Laplacian matrices of G
in combinatorial form L and normalized form L are defined as

L = D−A, (1.1)

L= D−1/2LD−1/2, (1.2)

respectively. Both L and L are symmetric and positive semi-definite, and thus, their
diagonalizations lead to a set of Ng real, non-negative eigenvalues that define the
graph Laplacian spectrum

Λ(G) = {0 = λ1 ≤ λ2 · · · ≤ λNg = λmax}. (1.3)
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The corresponding set of eigenvectors {χ l}
Ng
l=1 forms a complete set of orthonor-

mal vectors that span the graph spectral domain [8]. When necessary, we use the
notations ΛL(G) and ΛL(G) to distinguish between the two definitions of the graph
Laplacian. As the eigenvalues may be repetitive, for each λl , we denote its algebraic
multiplicity by mλl

and the index of its first occurrence by iλl
. That is, if λl is singu-

lar, i.e. mλl
= 1, then iλl

= l, and if λl is repetitive, then iλl
≤ l. The multiplicity of

eigenvalues equal to zero reflects the number of connected components in the graph.
In this paper, only connected graphs are considered, and thus, mλ1 = 1.

1.2.2 Graph Signals: Vertex versus Spectral Representations

Let `2(G) denote the Hilbert space of all square-summable real-valued vectors f ∈
RNg , with the inner product defined as

〈f1, f2〉=
Ng

∑
n=1

f1[n] f2[n], ∀f1, f2 ∈ `2(G) (1.4)

and the norm as

||f||22 = 〈f, f〉=
Ng

∑
n=1
| f [n]|2, ∀f ∈ `2(G). (1.5)

A real signal defined on the vertices of a graph, f : V →R, can be seen as a vector in
`2(G), where the n-th element represents the value of the signal on the n-th vertex.

For any f ∈ `2(G), its spectral representation f̂ ∈ `2(G), known as the graph
Fourier transform of f, can be used to express f in terms of the graph Laplacian
eigenvectors

f [n] =
Ng

∑
l=1
〈f,χ l〉︸ ︷︷ ︸
= f̂ [l]

χl [n]. (1.6)

With this definition of the Fourier transform, it can be shown that the Parseval
relation holds [42]

∀f1, f2 ∈ `2(G), 〈f1, f2〉= 〈̂f1, f̂2〉. (1.7)

1.2.3 Filtering of Graph Signals

In the graph setting, the generalized convolution product is defined as

(f1 ∗ f2)[n] =
Ng

∑
l=1

f̂1[l] f̂2[l]χl [n], ∀f1, f2 ∈ `2(G)). (1.8)
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In analogy with conventional signal processing, filtering of graph signals can be
viewed as an operation in the spectral domain. For a given graph signal f ∈ `2(G)
and graph filter g∈ `2(G), defined through its Fourier transform ĝ, the filtered signal,
denoted by (Fgf), can be obtained as

(Fgf)[n] = (g∗ f)[n] (1.9)

(1.8)
=

Ng

∑
l=1

ĝ[l] f̂ [l]χl [n]. (1.10)

For the graph filter g, the filter response of an impulse at vertex m

f = δ m↔ δ̂m[l] = 〈δ m,χ l〉= χl [m], (1.11)

can be obtained as

(Fgδ m)[n] =
Ng

∑
l=1

ĝ[l]χl [m]χl [n]. (1.12)

The impulse response of a graph filter is, in general, shift-variant; i.e, the impulse
response at one vertex is not simply a shifted version of the impulse response at
any other node. This is due to the absence of a well-defined shift operator in the
graph setting as that defined in the Euclidean setting. Therefore, a graph filter is
conventionally defined by its spectral kernel ĝ rather than by its impulse response.

Although the graph spectrum is discrete, to design spectral kernels, it is often
more elegant to define an underlying smooth continuous kernel. Let L2(G) denote
the Hilbert space of all square-integrable spectral functions K(λ ) : [0,λmax]→ R+,
with the inner product defined as

〈K1,K2〉L2
=
∫ +∞

−∞

K1(λ )K2(λ )dλ , ∀K1,K2 ∈ L2(G), (1.13)

and the L2-norm defined as

‖K‖2
L2

= 〈K,K〉L2
, ∀K ∈ L2(G). (1.14)

A discrete version of K(λ ) ∈ L2(G) can then be determined as

k[l] = K(λl), l = 1, . . . ,Ng. (1.15)

Note that although k is defined in the spectral domain, it is not linked to any explicit
vertex representation, and thus, the Fourier symbol ̂ is not used for their denotation.
This notation convention will be used throughout the chapter.
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1.2.4 Dictionary of Graph Atoms

For a given spectral kernel k associated with K(λ ), the vertex-domain impulse re-
sponses are obtained as

ψK,m = (Fkδ m)↔ ψ̂K,m[l] = k[l]χl [m]. (1.16)

The collection of impulse responses {ψK,m}
Ng
m=1 are considered as graph atoms asso-

ciated with spectral kernel K(λ ). Given a set of J spectral kernels {k j ∈ `2(G)}J
j=1,

a dictionary of graph atoms DG with JNg elements can be obtained

DG =
{
{ψK j ,m}

J
j=1

}Ng

m=1
. (1.17)

The atoms of DG form a frame in `2(G) if there exist bounds B2 ≥ B1 > 0 such that
[5]

∀f ∈ `2(G), B1||f||22 ≤∑
j,m
|〈f,ψK j ,m〉|

2 ≤ B2||f||22, (1.18)

where the frame bounds are given by

B1 = min
λ∈[0,λmax]

G(λ ), B2 = max
λ∈[0,λmax]

G(λ ), (1.19)

and G(λ ) ∈ L2(G) is defined as

G(λ ) =
J

∑
j=1
|K j(λ )|2. (1.20)

In particular, DG forms a tight frame if

∀λ ∈ [0,λmax], G(λ ) =C, (1.21)

and a Parseval frame if C = 1.

1.2.5 Decomposition of Graph Signals

Direct Decomposition

To decompose a graph signal f onto a set of the atoms in DG, the coefficients can be
obtained as
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cK j ,m = 〈f,ψK j ,m〉 (1.22)

(1.7)
=

Ng

∑
l=1

ψ̂K j ,m[l] f̂ [l], (1.23)

(1.16)
=

Ng

∑
l=1

k j[l] f̂ [l]χl [m]. (1.24)

Relation (1.24) shows that the direct decomposition requires a full eigendecomposi-
tion of the L since it requires i) the Laplacian eigenvectors {χ l}

Ng
l=1 and ii) the graph

Fourier transform of the signal f̂.
If DG forms a Parseval frame, the coeficents can be used to recover the original

signal as

f [n] = ∑
j
∑
m

cK j ,mψK j ,m

= ∑
j
∑
m

∑
l

k j[l] f̂ [l]χl [m]∑
l′

k j[l
′
]χ l′ [m]χl′ [n]

= ∑
l

∑
l′

∑
j

k j[l]k j[l
′
] f̂ [l]χl′ [n]∑

m
χl [m]χl′ [m]︸ ︷︷ ︸

δ
l−l′

= ∑
l

∑
j

k2
j [l]︸ ︷︷ ︸

=1

f̂ [l]χl [n]. (1.25)

Decomposition Through Polynomial Approximation

The decomposition of f on DG leads to a coefficient vector associated to each k j
given as

cK j = [cK j ,1,cK j ,2, . . . ,cK j ,Ng ]
T (1.26)

(1.24)
=

Ng

∑
l=1

k j[l] f̂ [l]χ l , (1.27)

that can be interpreted as filtered versions of f with different spectral kernels
{k j}J

j=1. Due to the redundancy of such a transform, it is beneficial to implement
the transform using a fast algorithm, rather than using the explicit computation of
the coefficients through (1.24). Moreover, for large graphs, it can be cumbersome to
compute the full eigendecomposition of L, and in extensively large graphs this can
in fact be impossible. One solution to overcome this computational burden is to use
a polynomial approximation scheme.

One such algorithm is the truncated Chebyshev polynomial approximation method
[20], which is based on considering the expansion of the continuous spectral window
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functions {K j(λ )}J
j=1 with the Chebyshev polynomials Cp(x) = cos(parccos(x)) as

K j(λ ) =
1
2

dK j ,0 +
∞

∑
p=1

dK j ,p C̄p (λ ) , (1.28)

where C̄p(x) = Cp(
x−b

b ), b = λmax/2 and dK j ,p denote the Chebyshev coefficients
obtained as

dK j ,p =
2
π

∫
π

0
cos(pθ)K j(b(cos(θ)+1))dθ . (1.29)

By truncating (1.28) to M terms, K j(λ ) can be approximated as an M-th order poly-
nomial Pj(λ ) ∈ L2(G). Consequently, cK j can be approximated as

cK j

(1.27)
=

Ng

∑
l=1

k j[l]︸︷︷︸
K j(λl)

f̂ [l]χ l (1.30)

≈
Ng

∑
l=1

Pj(λl) f̂ [l]χ l (1.31)

= Pj(L)
Ng

∑
l=1

f̂ [l]χ l (1.32)

(1.6)
= Pj(L)f (1.33)

where in (1.32) we exploit the property Lχl = λl χl ⇒ Pj(L)χl = Pj(λl)χl .

1.3 Ensemble Energy Spectral Density

The ensemble energy spectral density can be either computed using the graph
Fourier transform or approximated through decomposition of the signals using poly-
nomial approximation. In the former approach the ensemble energy is determined
at the resolution of eigenvalues whereas in the latter approach it is determined at the
resolution of a given number of subbands. The direct computation approach has two
shortcomings. Firstly, it requires explicit computation of the graph spectrum and
the associated eigenvectors; i.e., a full eigendecompositon of the graph Laplacian
matrix, which is computationally cumbersome for large graphs and infeasible for
extensively large graphs. Secondly, it typically results in a non-smooth description
of the ensemble energy. These shortcomings are resolved by using the polynomial
approximation scheme.
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1.3.1 Direct Computation: Using the Graph Fourier Transform

Definition (ensemble energy spectral density)

For a given graph G, with spectrum Λ(G), and graph signal set F = {fs}Ns
s=1, the

ensemble energy spectral density of F is obtained as

eF [l] =
1
Ns

Ns

∑
s=1

∣∣∣∣ ̂̃fs[l]
∣∣∣∣2 , l = 1, . . . ,Ng, (1.34)

where f̃s denotes the de-meaned and normalized version of fs obtained as

f̃s =
fs−∑

1+mλ1
r=1 〈fs,χr〉χr

||fs−∑
1+mλ1
r=1 〈fs,χr〉χr||2

, s = 1, · · · ,Ns. (1.35)

The ensemble energy spectral density has the following properties: (i) {eF [r] =

0}
1+mλ1
r=1 , and (ii) ∑l eF [l] = 1.

1.3.2 Approximation: Using Decomposition through Polynomial
Approximation

The ensemble energy spectral density can be approximated through a multi subband
decomposition scheme. In the sequel, we first design a B-spline based system of
spectral kernels. The benefit in using a B-spline basis is in the smoothness char-
acteristic of such kernels. Smooth overlapping kernels are advantageous it that i)
they enable obtaining a smooth estimation of the ensemble energy spectral density
and ii) they can be approximated as low order polynomials. We then decompose the
graph signals using the designed system of kernels with a large number of subbands
by exploiting the polynomial approximation scheme in decomposition. With such
a decomposition, we approximate the ensemble spectral content of the signal set at
the resolution of subbands.

1.3.2.1 B-spline based Parseval Frames on Graphs

The central B-spline of degree n, denoted β (n)(x), is a compactly-supported function
in the interval [−∆ (n),∆ (n)], i.e., β (n)(x) = 0 for all |x| ≥ ∆ (n) where ∆ (n) = (n+
1)/2, and is obtained through the (n+1)-fold convolution as

β
(n)(x) = β

(0)(x)∗β
(0)(x)∗ · · ·β (0)(x)︸ ︷︷ ︸

(n+1)times

, (1.36)
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where

β
(0)(x) =


1, − 1

2 < x < 1
2

1
2 , |x|= 1

2
0, otherwise.

(1.37)

Proposition 1 (B-spline based Parseval Frame on Graphs) For a given graph G
and B-spline generating function β (n)(x), n ≥ 2, a set of B-spline based spectral
kernels {B j(λ ) ∈ L2(G)}J

j=1 can be defined as

B j(λ ) =


B̃ j(λ )+∑

0
i=−∆

B̃i(λ ), j = 1
B̃ j(λ ), j = 2, . . . ,J−1
B̃ j(λ )+∑

J+∆+1
i=J+1 B̃i(λ ), j = J

(1.38)

where ∆ = bn/2c−1 and B̃·(λ ) ∈ L2(G) is defined as

B̃l(λ ) =

√
β (n)

(
λmax

J−1
(λ − l +1)

)
, l =−∆ , . . . ,J+∆ +1. (1.39)

The system of kernels {B j(λ )}J
j=1 satisfy

J

∑
j=1
|B j(λ )|2 = 1, ∀λ ∈ [0,λmax], (1.40)

and, thus, their associated dictionary of atoms forms a Parseval frame.

Proof. See Appendix A.

Fig. 1.1 shows two realizations of spline-type systems of spectral kernels. The
spline-type system of spectral kernels have wide, overlapping passbands. Moreover,
the kernels are smooth and can thus be approximated as low order polynomials.

0

1

¸
max

¸0

0

1

¸
max

¸0

Fig. 1.1 Spline-type system of spectral kernels with 20 spectral bands constructed based on B-
splines of order 3 (top) and 7 (bottom).

Using a system of Na B-spline based spectral kernels, {Bi(λ )}Na
i=1, the ensem-

ble spectral energy of F can be approximated at Na overlapping bands across the
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spectrum as

aF [i] =
1
Ns

Ns

∑
s=1

Ng

∑
n=1

∣∣∣〈̃fs,ψBi,n〉
∣∣∣2 , i = 1, . . . ,Na, (1.41)

where f̃s is as given in (1.35). Let b j ∈ `2(G) denote the discrete version of B j(λ ),
i.e.,

b j[l] = B j(λl), l = 1, . . . ,Ng. (1.42)

We have ∑i aF [i] = 1 since

∑
i

aF [i]
(1.24)
=

1
Ns

Na

∑
i=1

Ns

∑
s=1

Ng

∑
n=1

∣∣∣∣∣ Ng

∑
l=1

bi[l]
̂̃fs[l]χl [n]

∣∣∣∣∣
2

(1.43)

=
1
Ns

Ns

∑
s=1

Ng

∑
n=1

∣∣∣∣∣ Ng

∑
l=1

Na

∑
i=1

bi
2[l]︸ ︷︷ ︸

(1.40)
= 1

̂̃fs[l]χl [n]

∣∣∣∣∣
2

(1.44)

=
1
Ns

Ns

∑
s=1

Ng

∑
n=1

∣∣∣∣∣ Ng

∑
l=1

̂̃fs[l]χl [n]

∣∣∣∣∣
2

(1.45)

(1.6)
=

1
Ns

Ns

∑
s=1

Ng

∑
n=1
| f̃s[n]|2 (1.46)

=
1
Ns

Ns

∑
s=1
||̃fs||22 (1.47)

(1.35)
= 1. (1.48)

If desired, an explicit approximation of the ensemble energy spectral density of
F , denoted e(a)F [l], can also be determined. First, a continuous ensemble spectral
energy representation, denoted E(a)

F (λ ), is obtained through interpolating the set of
points (0,0)∪

{(
λmax

C

i

∑
k=1
||Bk(λ )||22 , aF [k]

)}Na

i=1

 . (1.49)

where C = ∑
Na
k=1 ||Bk(λ )||22. Then, e(a)F [l] is obtained through sampling E(a)

F (λ ) at
Λ(G) as

e(a)F [l] = E(a)
F (λl), l = 1, . . . ,Ng. (1.50)
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1.4 Signal-Adapted System of Spectral Kernels

The construction of a signal-adapted system of spectral kernels is motivated by two
observations: (i) the eigenvalues of the graph Laplacian that define the graph’s spec-
trum are irregularly spaced, and depend in a complex way on the graph topology; (ii)
the distribution of graph signals’ energy is generally non-uniform across the spec-
trum. Based on these observations, the idea is to construct an ‘adapted’ frame, such
that the energy-wise significance of the eigenvalues is taken into account, rather
than only adapting based on the distribution of the eigenvalues as proposed in [43].
In this way, also the topological information of the graph is implicitly incorporated
in the design, since the energy content is given in the graph spectral domain that is
in turn defined by the eigenvalues.

For the design of a signal-adapted system of spectral kernels with J subbands,
denoted {S j(λ )}J

j=1, we start off from a prototype system of spectral kernels
{U j(λ )}J

j=1 that satisfies the following two properties:

• (Uniformity constraint)

∃C ∈ R+,
∫

λmax

0
U j(λ )dλ =C, j = 1, . . . ,J. (1.51)

• (Tight Parseval frame constraint)

J

∑
j=1
|U j(λ )|2 = 1, ∀λ ∈ [0,λmax]. (1.52)

We then exploit the ensemble energy spectral density eF or the approximated en-
semble spectral energy aF to introduce the desired signal adaptivity. The adaptivity
is introduced by first transforming the ensemble spectral energy measures to an
energy-equalizing transformation TF(λ ) : [0,λmax]→ [0,λmax], which is then in turn
incorporated into the prototype design.

1.4.1 Prototype Uniform System of Spectral Kernels

There is no unique system of kernels that satisfies (1.51) and (1.52). We present a
design in which the kernels have a finite support of the bandpass type.

Proposition 2 (uniform Meyer-type (UMT) system of spectral kernels) Using the
auxiliary function of the Meyer wavelet, given by [28]

ν(x) = x4(35−84x+70x2−20x3), (1.53)

a set of J ≥ 2 spectral kernels defined as
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U1(λ ) =


1 ∀λ ∈ [0,a]
cos(π

2 ν( 1
γ−1 (

λ

a −1))) ∀λ ∈]a,γa]

0 elsewhere

(1.54a)

U j(λ ) =


sin(π

2 ν( 1
γ−1 (

λ−( j−2)∆
a −1))) ∀λ ∈]λI,λII]

cos(π

2 ν( 1
γ−1 (

λ−( j−1)∆
a −1))) ∀λ ∈]λII,λII +∆ ]

0 elsewhere

(1.54b)

UJ(λ ) =


sin(π

2 ν( 1
γ−1 (

λ−(J−2)∆
a −1))) ∀λ ∈]λI,λII]

1 ∀λ ∈]λII,λII +a]
0 elsewhere

(1.54c)

can be constructed, where

∆ = γa−a, (1.55a)
λI = a+( j−2)∆ , (1.55b)
λII = γa+( j−2)∆ , (1.55c)

a =
λmax

Jγ− J− γ +3
. (1.55d)

Fig. 1.2 illustrates the notations used. By setting γ = 2.73, the set of kernels defined
in (1.54) satisfies the uniformity constraint given in (1.51). The atoms of a dictionary
constructed using this set of spectral kernels form a Parseval frame on `2(G).

Proof. See Appendix B.
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Fig. 1.2 Construction of UMT system of spectral kernels.

Figs. 1.3(a) and (b) show realizations of the resulting UMT system of spectral
kernels for a fixed λmax and two different J. The UMT system of spectral kernels
have a narrow passband characteristic with the support of each kernel being a rather
strict subset of the spectrum, with minimal overlap of adjacent kernels.
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Fig. 1.3 UMT system of spectral kernels with J = 5 (top), J = 7 (middle) and J = 10 (bottom)
spectral scales.

1.4.2 Energy-Equalizing Transformation

If the ensemble spectral density function is available, TF(λ ) is obtained through
monotonic cubic interpolation [15] of the pair of points

λl ,
λmax

mλl

iλl
+mλl

∑
r=iλl

r

∑
k=1

eF [k]


Ng

l=1

. (1.56)

If the ensemble energy spectral density is approximated using a system of Na B-
spline based spectral kernels (cf. 1.3.2), TF(λ ) can instead be obtained through
monotonic cubic interpolation of the set of points(0,0)∪

{(
λmax

C

i

∑
k=1
||Bk(λ )||22 , λmax

i

∑
k=1

aF [k]

)}Na

i=1

 , (1.57)

where C = ∑
J
j=1 ||B j(λ )||22.

1.4.3 Warping the Prototype Design

By incorporating TF(λ ) in {U j(λ )}J
j=1, a warped version of the prototype design is

obtained as

S j(λ ) =U j(TF(λ )), j = 1, . . . ,J. (1.58)
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We refer to {S j(λ )}J
j=1 as a signal-adapted system of spectral kernels. The atoms

of a dictionary constructed using {S j(λ )}J
j=1 form a Parseval frame on `2(G) since

J

∑
j=1
|S j(λ )|2

(1.58)
=

J

∑
j=1
|U j(TF(λ )︸ ︷︷ ︸

:=λ
′

)|2, ∀λ ∈ [0,λmax]

=
J

∑
j=1
|U j(λ

′
)|2, ∀λ ′ ∈ [0,λmax]

= 1

where the last equality follows from Proposition 2.
If a discrete representation is needed for direct decomposition as in (1.24),

{s j}J
j=1 can be obtained through sampling S j(λ ) at Λ(G).

With this design, each of the J spectral kernel {s j}J
j=1 capture an equal amount

of ensemble energy. That is, if the ensemble energy spectral density is used we have

Ng

∑
l=1

s j[l]eF [l] =
1
J
, j = 1, . . . ,J, (1.59)

and if the approximation scheme is used we have

Ng

∑
l=1

s j[l]e
(a)
F [l] =

1
J
, j = 1, . . . ,J. (1.60)

Moreover, the resulting system of spectral kernels form a partition of unity, i.e.,

J

∑
j=1
|s j[l]|2 = 1, l = 1, . . . ,Ng, (1.61)

and thus, their associated dictionary of atoms, i.e.,
{
{ψS j ,m}

J
j=1

}Ng

m=1
, forms a Par-

seval frame.

1.5 Example Spectral Designs of Signal-Adapted Tight Frame

We present constructions of signal-adapted systems of spectral kernels for signal
sets realized on the Minnesota road graph, the Alameda graph [47] and the cerebel-
lum gray matter graph [2, 1]. Before proceeding to the constructions, let us consider
a model for simulating random graph signals of varying smoothness. The model will
be used to realize signals on the Minnesota and Alameda graphs, although there ex-
ists also real data for the latter graph. For a given graph with adjacency matrix A,
we consider a general model for realizing graph signals of density η ∈]0,1] and



16 Hamid Behjat and Dimitri Van De Ville

smoothness n ∈ Z+ as
xη ,n = Anpη , (1.62)

where pη ∈ `2(G) denotes a random realization of a spike signal as {pη [i] ∈
{0,1}}i=1,...,Ng such that ∑i pη [i] = ηNg. Application of the n-th power of A to pη

leads to a signal that i) respects the intrinsic structure of the graph and ii) has a
desired smoothness determined by n, a higher n leading to a smoother graph signal.

1.5.1 The Minnesota Road Graph

The edges of the Minnesota Road Graph represent major roads and its vertices their
intersection points, which often correspond to towns or cities, see Fig. 1.4(a). Fig.
1.4(b) shows the graph’s normalized Laplacian spectrum presented as the distribu-
tion of the eigenvalues.

0

2

¸

21.510.50

×10
2

(a) (b)

Fig. 1.4 (a) Minnesota road graph. (b) Histograms of the eigenvalues ΛL(G) of the Minnesota
road graph. Each bar indicates the number of eigenvalues that lie in the corresponding spectral
range.

Two sets of graph signals were constructed as

F1 =

{{
x[i]

η ,2

}
η=0.2,0.5

}
i=1,...,10

,

F2 =

{{
x[i]

η ,4

}
η=0.2,0.5

}
i=1,...,10

,

where index i denotes random realizations of pη in (1.62), resulting in 20 signals
in each set. Figs. 1.5(a) and (b) show a realizations of a signal from F1 and F2,
respectively.
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¸ ¸
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0.4
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0.2

0.4

21.510.50

Fig. 1.5 Sample signal realizations on the Minnesota road graph, (a) x0.2,2 and (b) x0.5,4. The plots
are normalized as xη ,n/||xη ,n||∞ (c)-(d) Distribution of the ensemble energy spectral density eF1
and eF2 , respectively. Each bar indicates the sum of ensemble energies of the eigenvalues lying in
the corresponding spectral range.

Fig. 1.6(a) shows the energy-equalizing transformation functions associated to
F1 and F2. The transformations constructed based on aF· , cf. (1.57) closely matches
that constructed based on eF· , cf. (1.56). The former transformation has the benefit
of being smooth, and indeed, that it was computed without the explicit need to
diagonalize L. By incorporating the transformations in the UMT system of spectral
kernels, signal-adapted systems of spectral kernels are obtained, see Figs. 1.6(b)-(c).

A comparison of Figs. 1.6(b) and (c) and Figs. 1.5(c) and (d) highlights the
energy-wise optimality of the proposed signal-adapted frame construction; i.e.,
more filters are allocated to spectral ranges that have higher ensemble energy. The
support of the filters in the two sets vary relative to the difference in the distribu-
tion of the ensemble energy of the two signal sets, with more filters allocated to the
lower end of the spectrum for the F2 frame than for the F1 frame, and vice versa
at the upper end of the spectrum. For comparison, a spectrum-adapted system of
kernels is shown in Figs. 1.6(d). The spectrum-adapted system of kernels is ob-
tained by warping the UMT prototype system of kernels with a spectrum-equalizing
transformation function TL(λ ) which equalizes the distribution of the eigenvalues
[43]. As the distribution of the eigenvalues of the Minnesota Road graph minimally
deviate from a uniform distribution, so does the spectrum-adapted system of ker-
nels relative to the UMT prototype, compare Figs. 1.3 and 1.6(d). On the contrary,
the signal-adapted design optimizes the construction of the kernels such that the
energy-wise significance of the eigenvalues is taken into account, rather than only
considering the distribution of the eigenvalues as in the spectrum-adapted frame.
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Fig. 1.6 (a) Constructed energy-equalizing transformation functions, TF1 (λ ) and TF2 (λ ) using the
exact and approximation schemes. Na denotes the number of spectral kernels used for the approx-
imation, cf. (1.41). (b)-(c) Signal-adapted system of spectral kernels constructed by warping the
UMT system of spectral kernels (J = 7) using TF1 (λ ) (approx, Na = 100) and TF2 (λ ) (approx.,
Na = 100), respectively. (d) Spectrum-adapted system of spectral kernels constructed by warping
the UMT system of spectral kernels (J = 6) using TL(λ ). In (b)-(d), the dashed lines corresponds
to the function G(λ ) in (1.19).

Such adaptation results in a system of spectral kernels that largely deviate from the
UMT prototype.

1.5.1.1 Robustness to Noise

It is interesting to study the robustness of the design to possible additive noise. Let
F1,σe denote the noise added version of signal set F1 computed as
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Fig. 1.7 (a) Deviation of energy-equalizing transformation functions of noise added signal sets
TF1,σe

(λ ) relative to TL(λ ) and TF1 (λ ) (cf. Fig. 1.6(a)) as a function of the signal sets’ SNRs.
(b) Signal-adapted system of spectral kernels constructed by warping the UMT system of spectral
kernels (J = 7) using TF1,σe

(λ ) of noise-added signal sets at five different SNRs. At 0 dB, the
resulting system of kernels are overlaid on the system of kernels obtained by warping the UMT
system of spectral kernels using the transformation function (TF1 (λ )+TL(λ ))/2, shown in dashed
lines.

F1,σe = {yi = xi + ei | xi ∈ F1}i=1,...,20 , (1.63)

where {ei}20
i=1 denote random realizations of additive white Gaussian noise of stan-

dard deviation σe. We construct signal sets F1,σe of varying SNR = σ2
x /σ2

e , where
σx denotes the standard deviation of each signal xi ∈ F1. Let TF1,σe

(λ ) denote the
energy-equalizing transformation function associated to F1,σe . Fig. 1.7(a) shows
mean-square error metrics ||TF1,σe

(λ )−TF1(λ )||2 and ||TF1,σe
(λ )−TL(λ )||2 across

signal sets F1,σe of varying SNR, where TL(λ ) and TF1(λ ) are the transforma-
tion functions shown in Fig. 1.6(a), TF1(λ ) being the approximated version using
Na = 100. The estimated energy-equalizing transformation functions TF1,σe

(λ ) be-
come more similar to TF1(λ ) as the SNR increases. At low SNRs, TF1,σe

(λ ) be-
come more similar to TL(λ ). The signal-adapted system of spectral kernels using
noise-added signal sets of five different SNRs are shown in Fig. 1.7(b). At the two
extremes, i.e., +20 dB and -20dB, the system of kernels become almost identical
to the system of kernels shown in Figs. 1.6(b) and (d), respectively. At 0dB, the
signal-adapted system of kernels at each subband can be seen as the average of the
corresponding kernels in the associated subbands in Figs. 1.6(b) and (d). Equiv-
alently, this can be seen as constructing a system of kernels through warping the
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the UMT prototype system of kernels with a warping function defined as the aver-
age of the spectrum-equalizing and energy-equalizing transformation functions, i.e.,
(TF1(λ )+TL(λ ))/2, see Fig. 1.7(b) at 0 dB.

1.5.2 The Alameda Graph

The Alameda Graph is constructed based on Caltrans Performance Measurement
System database1, see Fig. 1.8(a). The vertices of the graph represent detector sta-
tions where bottlenecks were identified over the period January 2011 and December
2015. A bottleneck is a location where there is a persistent drop in speed, such as
merges, large on-ramps and incidents. Two stations are considered as connected
through an edge if either 1) they are adjacent along a freeway, or 2) there is a con-
nection near the two stations at crossings between freeways. The latter type of edges
were defined based on Google Maps’ satellite images of Alameda county.

We use (1.62) to simulate a synthetic graph signal set as

Fs =
{

x[i]0.8,3

}
i=1,...,20

,

where index i denotes random realizations of pη in (1.62), resulting in a set of 20
signals. As real data, we treat the average duration of bottlenecks for each specific
month and shift (AM shift: 5am-10am, noon shift: 10am-3pm, and PM shift: 3pm-
8pm) as a graph signal, resulting in 180 signals in total. We denote this dataset as
Fr.

The spectral characteristics of both Fs and Fr deviate considerably from that of
the Minnesota Road graph. The distribution of the ensemble energy spectral density
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Fig. 1.8 (a) The Alameda graph. (b) Histogram of the eigenvalues ΛL(G) of the Alameda graph.
(c)-(d) Distribution of the ensemble energy spectral density eF of the simulated dataset Fs and the
real traffic dataset Fr , respectively.

1 The data are publicly available at http://pems.dot.ca.gov.
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of Fs emulates an exponential distribution. Comparing the histogram of the eigen-
values ΛL(G) in Fig. 1.8(b) and the distribution of the ensemble energy spectral
density of Fr in Fig. 1.8(c) shows that the ensemble energy is almost uniformly
spread across the spectrum.
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Fig. 1.9 (a) Energy-equalizing and spectrum-equalizing transformation functions. (b)-(c) Signal-
adapted system of spectral kernels constructed by warping the UMT system of spectral kernels
(J = 6) using TFs (λ ) (approx, Na = 50) and TFr (λ ) (approx., Na = 50), respectively. (d) Spectrum-
adapted system of spectral kernels constructed by warping the UMT system of spectral kernels
(J = 6) using TFL (λ ). In (b)-(d), the dashed lines corresponds to the function G(λ ) in (1.19).

Fig. 1.9(a) shows the energy-equalizing transformation functions associated to
Fs and Fr. Also, a spectrum-equalizing transformation TL(λ ) function is displayed.
TL(λ ) is constructed such that the distribution of eigenvalues is equalized [43]. Due
to the similarity of the distributions of ensemble energy of Fig. 1.8(b) (see ) and
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the distribution of eigenvalues (see Fig. 1.8(a)), TFr(λ ) closely resembles TL(λ ).
Fig. 1.9(b) shows the signal-adapted system of spectral kernels associated to Fs. The
majority of the spectral kernels are realized in the lower end of the spectrum where
the majority of the ensemble energy is present. The zoomed-in inset in Fig. 1.9(b)
show the benefit of the signal-adapted scheme in allocating a large number of spec-
tral kernels to a narrow band of the spectrum, and yet result in smooth kernels.
Figs. 1.9(c) and (d) show the signal-adapted system of spectral kernels associated to
Fr and the spectrum-adapted system of spectral kernels, respectively. The similar-
ity between TFr(λ ) and TL(λ ), leads to the resulting signal-adapted and spectrum-
adapted systems of kernels having a similar distribution of kernels across the spec-
trum, with more kernels allocated to the lower half of the spectrum and vice versa.
This example demonstrates where the signal-adapted frame design coincides with
the spectrum-adapted frame design [43] coincide in terms of their respective ap-
proach to adaptivity: if the ensemble spectral energy is equally spread across the
eigenvalues, the energy-equalizing and spectrum-equalizing transformation func-
tions become almost identical. Thus, although the signal-adapted design approach
is developed based on spectral energy characteristics of a signal set, it is inherently
also adapted to the graph’s spectrum.

1.5.3 The Cerebellum Gray Matter Graph

Functional magnetic resonance imaging (fMRI) is a conventional neuroimaging
technique used in the study of brain functionality. Its principle is in detecting a
contrast that arises as a result of increased blood flow to activated regions of the
brain, the so called blood-oxygen-level-dependent (BOLD) signal. Acquired fMRI
data are generally corrupted with an extensive amount of noise mainly due to the fast
acquisition rate; high temporal resolution is necessary to enable correlate brain ac-
tivity with the experimental paradigm. The BOLD signal is not detectable across the
entire brain tissue. Rather, the signal is only expected within the brain’s gray matter
[27]. The gray matter is convoluted layer interleaved with the brain’s white matter
tissue as well as the cerebrospinal fluid. As such, the BOLD signal exhibits spatial
patterns that are not well suited to be characterized within a Euclidean setting. In
the classical Euclidean setting, filters and wavelets used in image processing are
isotropic in structure and quasi shift-invariant. The latter property infers that their
structure does not vary when applied to different regions within an image/volume.

Fig. 1.10 Illustration of the cerebellum graph.
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Such filters are thus not well suited for detecting the BOLD signal, with its aformen-
tioned spatial characteristics. At the spatial resolution of fMRI, isotropically shaped
basis functions will cross boundaries of gray matter, even at the finest scale. Thus, it
is advantageous to construct filters that adapt to this intricately convoluted domain
rather than to assume that the spatial characteristics of the underlying signal is inde-
pendent of its location. To date, various approaches have been proposed to address
this concern (see for example, [25, 9, 19, 33]). In particular, the construction of
anatomically-adapted graph wavelets was recently proposed [2]. Yet, the deficiency
of a fixed graph frame design and the lack of a systematic approach in determining
the spectral coverage of spectral bands for analyzing fMRI data have been pointed
out in [2, 1, 3]. These findings motivated the need for a frame design that adapts to
the spectral characteristics of fMRI graph signals.

We consider a graph that encodes the 3-D topology of the cerebellar gray matter
[2], which is constructed based on an atlas template of the cerebellum [12]. The
graph vertices represent gray matter voxels within the cerebellum. The graph edges
are defined by determining the adjacency of the gray matter voxels within their
3×3×3 voxel neighbourhood, see Fig. 1.10. The fMRI data were acquired from 26
healthy subjects performing an event-related visual stimulation task [24].2 For each
subject, a structural MRI scan of the brain anatomy and a series of functional vol-
umes were acquired. The structural and functional volumes were registered together
and mapped to the same spatial resolution, leading to a one-to-one correspondence
between functional and structural voxels. Functional voxels associated to cerebellar
gray matter were then extracted and treated as cerebellar graph signals. A signal
set was constructed for each subject , {Fk}26

k=1, by randomly selecting 20 signals
from each subject’s functional signal set. A signal set including the signals from all
subjects was also constructed as F = F1∪F2∪·· ·∪F26.

Fig. 1.11(a) shows the distribution of the eigenvalues ΛL(G) of the cerebellum
gray matter graph. The distribution of the ensemble energy spectral density of sig-
nals sets F1, F2 and F are shown in Figs. 1.11(b), (c) and (d), respectively. The
distribution of eigenvalues is significantly different from that of the ensemble en-
ergy spectral densities; most eigenvalues are located at the upper end of the spec-
trum, whereas the ensemble energy is significantly concentrated at the lower end
of the spectrum. The ensemble energy spectral densities also vary across the sig-
nal sets. Signal set F1 has more low energy spectral content than F2 (compare the
height of the first bins of the histograms in Figs. 1.11(b) and (c)), whereas F2 show
greater spectral content at higher harmonics. F1 and F2 represent the two extremes
in spectral content distribution among the 26 subjects. The distribution of the en-
semble energy content of F falls in between that of F1 and F2, see Figs. 1.11(d).
This is better observed by comparing the energy-equalizing transformation func-
tions, see Fig. 1.11(e). The transformations associated to {Fk}26

k=3 span the space
in between TF1(λ ) and TF2(λ ), and TF(λ ) falls almost in the mid range. Moreover,
the significant difference between the distribution of the eigenvalues and that of the
ensemble signal energies is reflected as a major discrepancy between TL(λ ) and the

2 The data are publicly available at https://openfmri.org/dataset/ds000102.
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Fig. 1.11 (a) Histogram of the eigenvalues ΛL(G) of the cerebellum graph. (b)-(d) Distribution
of the ensemble energy spectral density of F1, F2 and F . (c) Energy-equalizing and spectrum-
equalizing transformation functions. The black curves correspond to the energy-equalizing trans-
formation for each subject’s signal set. The upper and lower extreme transformations represented
with dashed curves are associated to signal sets F1 and F2, respectively.
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energy equalizing transformations. Fig. 1.12 shows the resulting signal-adapted and
spectrum-adapted systems of spectral kernels.

The kernels of the spectrum-adapted frame are localized at the higher end of the
spectrum where a significant proportion of the eigenvalues fall. In contrast, kernels
of the signal-adapted frames are localized at the lower end of the spectrum. This
shows that the signal-adapting scheme leads to an optimal configuration of filters
relative to the given ensemble energy content. Laplacian eigenmodes correspond-
ing to large eigenvalues tend to become localized and less stable (i.e., influenced
by small changes to the structure of the graph). The ensemble energy will capture
the consistency of the energy for each mode across signals of the class, and thus
these eigenmodes will in practice aggregate in larger subbands. The narrowband
configuration of the proposed signal-adapted frame at the lower end of the spectrum
closely resembles the design previously adopted for analyzing cerebellar data in
[2, 1], which was obtained by empirically tuning the spectral design of the Meyer-
like graph wavelet frame [26].

1.6 Conclusion & Outlook

We presented a scheme for the spectral design of signal-adapted frames on graphs.
The scheme exploits the ensemble energy spectral density of a given signal class to
introduce adaptivity of the spectral kernels to signal content. The design only uses
stationary signal information, with a flexibility to represent non-stationary features
based on the width and smoothness of the bandpass characteristics. The design has
been formulated on the graph Laplacian spectrum but can be readily extended to
the spectrum of the graph adjacency matrix to enable signal-adapted decomposition
of signals defined on directed graphs. Various potential applications can be envi-
sioned for the proposed developments. For instance, in functional brain imaging,
another major research theme where graph signal processing can be advantageous
is the study of intrinsic brain activity that fully takes into account the dynamic as-
pects [21]. In such case, the moment-to-moment functional data can be analyzed on
a graph “backbone” [23, 21]. Time-dependent functional data can then be used to
constitute the ensemble energy spectral density. As alternative avenues, signal de-
compositions provided by the proposed signal-adapted system of kernels can also
be found beneficial in applications such as graph signal compression [39] and deep
neural networks learning schemes over graphs [6, 11].

Acknowledgements This chapter draws in part on material previously published in [4].
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Appendix 1 - Proof of Proposition 1

The sum of squared magnitudes of B-spline based spectral kernels {B j(λ )}J
j=1

forms a partition of unity since

J

∑
j=1
|B j(λ )|2

(1.38)
=

J+∆+1

∑
i=∆

|B̃i(λ )|2

(1.39)
=

J+∆+1

∑
i=∆

β
(n)
(

λmax

J−1
(λ − i+1)

)
i−1→k
=

J+∆

∑
k=∆−1

β
(n)
(

λmax

J−1
(λ − k)

)
= 1.

where in the last equality we use the property that integer shifted splines form a
partition of unity.

Appendix 2 - Proof of Proposition 2

In order to ensure that the spectral kernels cover the full spectrum, a must be chosen
such that

λmax
(1.54c)
= λII +a

( j=J)
= γa+(J−2)∆ +a,

which using (1.55a) leads to a = λmax
Jγ−J−γ+3 .

To prove that the UMT system of spectral kernels form a tight frame, (1.21) needs
to be fulfilled. Since, for all j, the supports of U j−1(λ ) and U j+1(λ ) are disjoint,
G(λ ) can be determined as
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G(λ ) =
J

∑
j=1
|U j(λ )|2

(1.54)
=



|U1(λ )|2
(1.54a)
= 1 ∀λ ∈ [0,a]

|U1(λ )|2 + |U2(λ )|2 ∀λ ∈]a,γa]
|U2(λ )|2 + |U3(λ )|2 ∀λ ∈]γa,γa+∆ ]
...

...

|UJ(λ )|2
(1.54c)
= 1 ∀λ ∈]λmax−a,λmax]

(1.54b)
=



1 ∀λ ∈ [0,a]
cos2(xI)+ sin2(xI) ∀λ ∈]a,γa]
cos2(xII)+ sin2(xII) ∀λ ∈]γa,γa+∆ ]
...

...
1 ∀λ ∈]λmax−a,λmax]

= 1 ∀λ ∈ [0,λmax] (1.64)

where xI =
π

2 ν( 1
γ−1 (

λ

a −1)) and xII =
π

2 ν( 1
γ−1 (

λ−∆

a −1)).
For any given γ , the constructed set of spectral kernels form a tight frame. How-

ever, in order for the frame to satisfy the uniformity constraint given in (1.51), the
appropriate γ needs to be determined. From (1.54b), we have ∀ j ∈ {2, . . . ,J−2}

U j(λ ) =U j+1(λ +∆) ∀λ ∈]λI,λII +∆ ]. (1.65)

By considering an inverse linear mapping of the spectral support where U1(λ ) 6= 0,
i.e. [0,γa], to the spectral support where UJ(λ ) 6= 0, i.e. [λmax− γa,λmax], we have

U1(λ ) =UJ(−λ +2a+ J∆) ∀λ ∈ [0,γa]. (1.66)

Thus, from (1.65) and (1.66) we have∫
λmax

0
U j(λ )dλ =C2, j = 2, . . . ,J−1 (1.67a)∫

λmax

0
U1(λ )dλ =

∫
λmax

0
UJ(λ )dλ =C1, (1.67b)

respectively, where C1,C2 ∈R+. Thus, in order to satisfy (1.51), γ should be chosen
such that
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C1 =C2∫
λmax

0
U1(λ )dλ =

∫
λmax

0
U2(λ )dλ

a+
∫

γa

a
U1(λ )dλ =

∫
γa

a
sin(

π

2
ν(

1
γ−1

(
λ

a
−1)))dλ

+
∫

γa+∆

γa
U2(λ )dλ

a
(1.65)
=

∫
γa

a
sin(

π

2
ν(

1
γ−1

(
λ

a
−1)))dλ . (1.68)

The optimal γ that satisfies (1.68) was obtained numerically by defining

Q(γ) =
∫

γa

a
sin(

π

2
ν(

1
γ−1

(
λ

a
−1)))dλ −a, (1.69)

and discretizing Q(γ) within the range (a,γa], with a sampling factor of 1× 10−4.
Testing for γ ≥ 1, with a step size of 1×10−2, the optimal value, which is indepen-
dent of λmax and J, was found to be γ = 2.73.
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