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A graph based framework for fMRI brain activation mapping is presented. The approach exploits the spectral
graphwavelet transform (SGWT) for the purpose of defining an advancedmulti-resolutional spatial transforma-
tion for fMRI data. The framework extends wavelet based SPM (WSPM), which is an alternative to the conven-
tional approach of statistical parametric mapping (SPM), and is developed specifically for group-level analysis.
We present a novel procedure for constructing brain graphs, with subgraphs that separately encode the structur-
al connectivity of the cerebral and cerebellar gray matter (GM), and address the inter-subject GM variability by
the use of template GM representations. Graph wavelets tailored to the convoluted boundaries of GM are then
constructed as a means to implement a GM-based spatial transformation on fMRI data. The proposed approach
is evaluated using real as well as semi-synthetic multi-subject data. Compared to SPM andWSPM using classical
wavelets, the proposed approach shows superior type-I error control. The results on real data suggest a higher
detection sensitivity as well as the capability to capture subtle, connected patterns of brain activity.

© 2015 Elsevier Inc. All rights reserved.
Introduction

Functional magnetic resonance imaging (fMRI) is a key modality to
localize brain activity based on the blood-oxygen-level-dependent
(BOLD) signal (Ogawa et al., 1993). The most widely used approach in
fMRI activationmapping is amass univariate hypothesis-drivenmethod
that is implemented in many software packages such as statistical
parametric mapping (SPM) (Frackowiak et al., 1997; Friston et al.,
1994). Using regressors defined by the experimental paradigm, a gener-
al linear model (GLM) is fitted to the time course of every voxel of the
brain, followed by a statistical test of a linear combination of the fitted
parameters, leading to a statistical map indicating evidence for
stimulus-related brain activity. Since using a Bonferroni correction is
too conservative, SPM deals with the multiple comparison problem
based on Gaussian random field theory (GRFT) (Poline et al., 1997). A
key characteristic of GRFT is that it requires initial smoothing of the
functional data by a fixed Gaussian filter. This pre-filtering not only is
required to control the spatial smoothness of the data to comply with
GRFT, but it also serves as a means to improving the signal-to-noise
ratio (SNR) by virtue of the matched filter argument. However, such
linear isotropic filtering comes at the expense of a loss in fine spatial
details of the underlying activity.
l Engineering, Lund University,
As an alternative to GRFT, spatial wavelet transforms have been pro-
posed as a means to non-linearly denoise functional data within frame-
works of both classical inference (e.g., Aston et al., 2005; Ruttimann
et al., 1998; Soleymani et al., 2009; Van De Ville et al., 2004, 2007;
Wink and Roerdink, 2004) and Bayesian inference (e.g., Flandin and
Penny, 2007; Sanyal and Ferreira, 2012). Since brain activity is highly lo-
calized in space (Bullmore et al., 2004), the property of sparse signal
representation in the wavelet domain makes it possible to encode a
cluster of active voxelswith only a few coefficients. Such representation
enhances the SNR as the background noise remains equally distributed
among the wavelet coefficients, and thus, coefficient-wise statistical
testing provides a higher sensitivity than voxel-wise testing. Wavelet-
based SPM (WSPM) (Van De Ville et al., 2007) has the unique feature
of treating thresholding within the wavelet domain as a denoising
step only, and the statistical testing is deferred to a second thresholding
on the reconstructed map within the spatial domain.

Accounting for intra-subject gray matter structure

Gaussian filters as well as standard wavelets such as those deployed
by WSPM share several basic properties: they are (i) isotropic in
structure, (ii) defined within regular Euclidean spaces (either a square
in 2-D space or a cube in 3-D space) and (iii) stationary and quasi
shift-invariant, meaning that their structure does not vary as applied
to different regions within a volume. To various extents, these proper-
ties are opposed to the expected geometrical properties of the activation
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pattern. Since the graymatter (GM),withinwhich the BOLD response is
expected, has a convoluted structure, isotropically shaped activation
patterns that cross boundaries of GM are unlikely. Moreover, due to
the differences in the structure of the sulci and gyri across the brain,
intra-subject variability of GM geometry is widely observed (Fischl
et al., 2002; Riviere et al., 2002). Thus, it is essential to construct filters
that adapt to the intricately convoluted GM domain rather than assum-
ing the spatial characteristics of the underlying signal independent of its
location. As a step in this direction, surface-based approaches have been
proposed that restrict the analysis to the cortex byusing reconstructions
of the cortical surface. One such approach is the anatomically-informed
basis function (AIBF)method proposed in Kiebel et al. (2000) andKiebel
and Friston (2002), where a forward model is determined for solving
the inverse problem of explaining the distribution of the functional
data using circular Gaussian basis functions defined on the cortical sur-
face. In other approaches, here collectively referred to as cortical surface
mapping (CSM), an interpolation scheme is used to map the functional
data to the extracted cortical surface, followed by iteratively smoothing
the data on the surface using different procedures such as diffusion
smoothing (Andrade et al., 2001), heat kernel smoothing (Chung et al.,
2005; Hagler et al., 2006) and spline smoothing (Qiu et al., 2006). Never-
theless, the problemof loss in spatial accuracy remains in CSMdue to the
irreversible smoothing. Aside from that, the mapping of volumetric data
to a surface is challenging due to the variability in cortical thickness.

In the present paper, we introduce an alternative approachwherewe
define a volumetricGMdomainwith the help of graph theory, where the
graph vertices correspond to irregularly sampled points of the 3-D
Euclidean space. Numerous neuroimaging applications have benefited
from brain data being modeled as graphs and graph signals (Bullmore
and Sporns, 2009; Richiardi et al., 2013). Here, we propose constructing
brain graphs that encode local structural connectivity of GM geometry
(irregular domain in 3-D), as opposed to the surface-based approaches
which mainly incorporate cortical topology (2-D surface that is folded).
Functional data can then bemodeled as a scalar function (signal) defined
on the vertices, and graph filters that diffuse only within the GM volume
can be constructed. As such, the performance in fMRI brain activation
mapping can be improved by attenuating the effect of non-signal compo-
nents that originate from outside the GM.

With the increased interest in graph approaches to data analysis, a
great amount of research has been devoted to generalizing signal
processing operations to the graph setting (Shuman et al., 2013). This
includes wavelet transforms, with the spectral graphwavelet transform
(SGWT) proposed in Hammond et al. (2011) being an example. To pre-
vent linear irreversible smoothing and to perform analysis at multiple
scales, we propose the tight-frame SGWT (Leonardi and Van De Ville,
2013) to construct GM-adaptedwavelets that are utilized to implement
an advanced spatial transformation on fMRI data, integrated within the
statistical analysis of the WSPM framework.
Accounting for inter-subject GM variability

Group-level fMRI activation mapping is further complicated by the
inter-subject GM variability that is important to address. This variability
Fig. 1. Segmented graymatter of four individuals from an experimental dataset (see Experimen
in the cerebellum, as opposed to the cerebrum where the pattern of folding varies greatly from
renders the need for normalization of functional data to a template
space, which, in turn, leads to better domain matching across subjects
and improved statistical power as activations better overlap. Due to
the observed difference in the extent of geometrical GM variety in the
cerebrum and the cerebellum across subjects, it is advantageous to
define cerebral and cerebellar template spaces separately.

The geometry of the cerebral cortex is not consistent across subjects.
Although there are similarities in terms of the main fissures, the GM
foldings are very inconsistent across individuals even in standard popu-
lations (Mangin et al., 2004; Riviere et al., 2002), see Fig. 1. The most
commonly used cortical templates are based on either the anatomy of
a single subject (Tzourio-Mazoyer et al., 2002) or the ensemble average
over many subjects, such as the ICBM-152 (Evans et al., 1993) that de-
fines the Montreal Neurological Institute (MNI) space. Such templates
can be viewed as two extremes in GM representation: single subject
templates take no account for inter-subject variability, and the group
averaged templates, such as the ICBM-152, lack fine anatomical detail
of the cerebral GM,whichmakes both categories unsuitable for our pur-
pose. To address this problem, study specific template construction
methods such as DARTEL (Ashburner, 2007) are of great benefit. The
fast diffeomorphic image registration scheme proposed by Ashburner
is among the best performing (Klein et al., 2009) and can produce a de-
tailed group-averaged template GM through iterative, nonlinear
warping of the segmented GM of a set of subjects.

The structural variability within the cerebellum is lower than in the
cerebral cortex, since the cerebellar structure is relatively consistent
across individuals in terms of the number and shape of its fissures
(see Fig. 1). This observation has made it possible to create atlas
templates of the cerebellum that prevent a loss in spatial accuracy of
the anatomical detail. The spatially unbiased infra-tentorial (SUIT) cer-
ebellum template (Diedrichsen, 2006) is the most accurate cerebellar
template available to date. Compared to the ICBM 152 template
(Evans et al., 1993) that is designed through averaging of T1 scans
from 152 different subjects, SUIT is constructed from scans of 20
subjects, and at the same time, has the unique feature of being spatially
unbiased; that is, the location of each of the structures is equal to its ex-
pected location in the MNI space across subjects (Diedrichsen, 2006).

Therefore, we propose the use of the SUIT atlas as the basis for defin-
ing a canonical cerebellar subgraph and the DARTEL for constructing
study-dependent template cerebral subgraphs. A full GM-adapted
brain graph is then defined by merging the two subgraphs.
Overview

The paper is organized as follows. In the Transform-based SPM
(tSPM) section, WSPM is reviewed by generalizing the framework
such that it 1) incorporates any linear spatial transform and 2) is set
out for group-level analysis. In the Spectral graph wavelet transform
(SGWT) section, we review the necessary concepts from graph theory
andwavelet design. In the Spectral graphwavelet based SPM(tSPMsgwt)
section, we introduce the construction of GM-adapted graphs and
wavelets, the required preprocessing steps and contrast mappings. In
the Datasets section, we introduce a real dataset as well as the design
tal dataset section) illustrating the inter-subject variability. The variability is less significant
one individual to the other.



1 In particular, for the one sample t-test that is used for analyzing the datasets in this
study, X2 = [1, ⋯, 1]T, c2 = 1. As such, βk will be a scalar value, and μk and sk will corre-
spond to unbiased estimates of the coefficients' sample mean and variance, respectively.
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of a semi-synthetic multi-subject dataset. In the Results section, we
demonstrate the utility of our approach by applying it to the semi-
synthetic and experimental datasets, followed by a discussion in the
Discussion section.

Methods

For the data structurewe assume J subjects, where each subject has a

structural scan S j
� � J

j¼1 and a set of Nt functional volumes (across time),

each containing Nv voxels. Nr1 and Nr2 regressors are assumed for the
first level (subject-level) and second level (group-level) analysis,
respectively. {X1, j} j = 1

J and X2 denote the corresponding first level
and second level design matrices which are of size Nt × Nr1 and
J × Nr2, respectively.

Transform-based SPM (tSPM)

We present the WSPM in a more general way as transform-based
SPM (tSPM) such that it: 1) incorporates any invertible linear spatial
transform and 2) addresses fMRI activationmapping at the group-level.

The invertible linear spatial transform is a mapping from the voxel
space ℝNm to ℝNT , where Nm ≤ Nv and NT denotes the dimension of the

transform domain. T ¼ ζ1jζ2j…jζNT

� �T denotes the corresponding or-

thogonal transformation matrix, with ζkf gNT
k¼1 being the basis vectors

spanning the transform domain. For the classical wavelets such as the
discrete wavelet transform (DWT) used in Van De Ville et al. (2004,
2007), Nm = Nv = NT, where the second equality follows from the
DWT being non-redundant. For the graph setting proposed in this
paper, Nm is the number of graph vertices, and NT = (S + 1) × Nm,
where S denotes the number of wavelet scales of the spectral graph
wavelet transform (SGWT) that is a redundant graph transform.

Temporal modeling at the first level
Temporal modeling of the data is implemented in the native spatial

domain, leading to a parameter map (effect size) for each subject. The
approach is mass univariate where a general linear model (GLM) is
fitted to the time course of each voxel i ∈ {1, …, Nm} for all subjects
j ∈ {1, …, J} as

vi; j ¼ X1; jβi; j þ ϵi; j; ð1Þ

where vi,j is anNt×1vector representing the time course of the ith voxel
of the jth subject,βi,j is anNr1 × 1 vector of regression parameters and ϵi,j
is the vector of residual errors. Using the estimated βi,j, the effect sizes
are constructed as

pi; j ¼ cT1βi; j ð2Þ

where c1 is an Nr1 × 1 first level contrast vector that defines how the
estimated regression parameters should be combined based on the
hypothesis at test. By vectorizing pi,j, the first level parameter maps
(contrast maps) of the subjects are obtained as

p j ¼ p1; j;p2; j;⋯;pNm ; j

h iT
: ð3Þ

Transform-domain spatial modeling
The first level parameter maps are then taken into the spatial trans-

form domain by applying the transform matrix T as

P0 ¼ T p1jp2j⋯jp J

h i
; ð4Þ

where P′ is an NT × J matrix, each column representing the transform
domain coefficients of one subject.
In order to implement a standard group-level random-effects infer-
ence across subjects, a second-level GLM is fitted to the change in value
of each coefficient across subjects, i.e., the rows of matrix P′ denoted
with P′k,:, as

P0
k;: ¼ X2βk þ ϵk; ð5Þ

where βk is an Nr2 × 1 vector of regression parameters and ϵk is the
vector of residual errors. The effect size μk and its uncertainty sk for
each coefficient k can then be obtained as

μk ¼ cT2βk; ð6Þ

sk ¼ ϵkTϵkcT2 XT
2X2

� �−1
c2; ð7Þ

respectively, where c2 is an Nr2 × 1 second-level contrast vector.1

Transform-domain denoising
At this stage, the main idea is to threshold the estimated effect sizes

μk as ameans to denoise the parametermaps. This is done by construct-
ing transform-domain t-values corresponding to the coefficients as

tk ¼
μkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sk

J−rank X2ð Þ

r ; ð8Þ

where tkf gNT
k¼1 follow a Student's t-distributionwith J degrees of freedom

under the null hypothesis that stimulus-related activity is driven by
noise only.

By subjecting tk to a transformdomain thresholdτT , the reconstructed,
denoised second level parameter map after bias correction is obtained as

ûi ¼ min
XNT

k¼1

H tkj j−τTð Þμkζk i½ �;
XNT

k¼1

μkζk i½ �
 !

; ð9Þ

where i= 1,…, Nm, H(∙) is the Heaviside step function and∑NT
k¼1μkζk i½ �

denotes the elements of the unprocessed map (i.e., the linear estimate).
The optimal value of τT is obtained in combination with a spatial domain
threshold τS (see below Eq. (10)) such that the null hypothesis rejection
probability in the spatial domain is properly controlled; see Van De Ville
et al. (2004) for further details and derivations.

Spatial-domain statistical inference
The final detected parameter map is created by constructing spatial

domain t-values and performing statistical significance testing by
subjecting them to a spatial domain threshold τS as (Van De Ville
et al., 2004)

ui ¼ H
ûiXNT

k¼1
μk ζk i½ �j j

−τS

0
@

1
Aûi: ð10Þ

To address the multiple comparison problem, the desired signifi-
cance level is adjusted using Bonferroni correction when computing
the optimal combination of τS and τT .

Spectral graph wavelet transform (SGWT)

We now give a brief review of the SGWT onwhich our framework is
based, and refer to Hammond et al. (2011) for further details.



Fig. 2. Definition of neighborhood connectivities. The red dashed lines indicate the direc-
tions defining the 6-connectivity neighborhood with respect to the central green point,
whereas the red dashed lines together with the red solid lines define the 26-connectivity
neighborhood.
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Classical wavelets
Classical wavelets defined in the Euclidean domain are constructed

by shifting and scaling a mother wavelet ψ, as ψs;l xð Þ ¼ 1
s ψ x−l

s

	 

, whereψs,l(x) denotes the wavelet at scale s and location l. To generalize wave-

lets to graphs, the analogue of the Fourier domain is required for graphs.
In the Fourier domain, the classical continuous wavelet is given by

ψs;l xð Þ ¼ 1
2π

Z ∞

−∞
ψ̂ sωð Þe− jωle jωxdω; ð11Þ

where ψ̂denotes the Fourier transformofψ. FromEq. (11), it is clear that

the scaling parameter s solely affects the argument of ψ̂, and the shifting
is represented by multiplication with the complex exponential e− jwl.
These two observations are essential when generalizing the wavelet
transform to graphs.

Graphs and their spectra
Turning to spectral graph wavelets, a brief description of some basic

notions of graphs and their spectra is in place. An undirected binary
graph is described by its set of vertices V and edges E as G ¼ V; Eð Þ,
where each edge is defined by a pair of unordered indices (m, n). For a
graphwith jVj ¼ Ng vertices and no self-loops, the symmetric adjacency
matrix A is given by the off-diagonal elements

am;n ¼ 1 if m;nð Þ∈ E;
0 otherwise:

�
ð12Þ

The degree matrix D is diagonal with elements dm = ∑nam,n. The
normalized graph Laplacian matrix L is given by

L ¼ I−D−1=2AD−1=2; ð13Þ

where I denotes the identity matrix. Assuming a single connected
graph, and noting that L is symmetric and positive semi-definite, the
eigendecomposition of L leads to a set of Ng real, non-negative eigen-
values, i.e., 0 ¼ λ1≤λ2⋯≤λNg :¼ λmax. The multiplicity of eigenvalues
equal to zero reflects the number of connected components in the

graph. The corresponding eigenvectors χnf gNg

n¼1 form a complete set of
orthonormal vectors, which defines the graph spectral domain
(Chung, 1997).

Spectral graph wavelets
The wavelet shifting and scaling operations are not straightforward

to generalize for signals lying on a non-Euclidean domain such as
graph signals. Hammond et al. (2011) have tackled this issue by taking
the design to the graph spectral domain and deriving the equivalence
with the Fourier domain of conventional wavelets. Since the complex
exponentials {ejωx} are both the basis functions of the Fourier transform,
cf. Eq. (11), and the eigenfunctions of the 1-D Laplacian operator, an
analogue spectral design for graphs can be defined based on the graph

eigenvectors χnf gNg

n¼1 . Thus, the spectral graph wavelet functions

ψs;l
� �S−1

s¼1 and scaling function ϕl localized at each graph vertex l can
be defined as

ψs;l xð Þ ¼
XNg

n¼1

g ρsλnð Þχ�
n lð Þχn xð Þ; ð14Þ

ϕl xð Þ ¼
XNg

n¼1

h λnð Þχ�
n lð Þχn xð Þ; ð15Þ

where ρsf gS−1
s¼1 denote the scaling parameters, and g(∙) and h(∙) are

wavelet and scaling generating kernels defined as weighted windows
on the graph spectrum, respectively. An example of such a frame can
be constructed by defining Meyer-like wavelet/scaling generating
kernels in the spectral graph domain as shown in Appendix A.

The spectral graph wavelet and scaling coefficients of a graph signal
f∈ℝNg at scale s and location l are computed as

wψ s; lð Þ ¼ f ;ψs;l
� 


¼14ð ÞXNg

n¼1

g ρsλnð Þ f̂ nð Þχn lð Þ; ð16Þ

wϕ lð Þ ¼ f ;ϕlh i ¼15ð ÞXNg

n¼1

h λnð Þ f̂ nð Þχn lð Þ; ð17Þ

respectively, where 〈⋅, ⋅ 〉 denotes the inner product, and f̂ is the spectral

representation of the graph signal f given by f̂ nð Þ ¼ f ;χnh i
n oNg

n¼1
.

Spectral graph wavelet based SPM (tSPMsgwt)

In what follows, the SGWT is adapted to a GM brain graph and inte-
grated in the tSPM framework for group-level activationmapping, lead-
ing to a new graph based fMRI activation mapping referred to as
tSPMsgwt. First, the construction of GM-adapted graphs is introduced,
followed by the design of the corresponding graph wavelets and a de-
scription of the required preprocessing steps and contrast mappings.

GM-adapted graphs
Defining a graph based on the GM geometry of the brain Ggm is an

essential step in our approach. Ggm is constructed as a graph with two
subgraph components: a cerebral subgraph Gcbr constructed using the
GM information acquired from structural scans of multiple subjects,
and a cerebellar subgraph Gcbl constructed based on the SUIT template
atlas.

Cerebellar graph construction (Gcbl). The cerebellar graph is designed as
follows. First, the SUIT cerebellum template Ssuit (Diedrichsen, 2006),
defined in MNI coordinates at 1 mm resolution, is segmented using
the unified segmentation algorithm (Ashburner and Friston, 2005) to
extract its GM probability map, denoted Msuit , with voxel probability
values pi ∈ [0, 1]. Next, a cerebellar GM mask is defined by intersecting
the thresholdedMsuit (threshold value 0.5) with the SUIT probabilistic
atlas of cerebellar lobules Asuit (Diedrichsen et al., 2009). Intersection
of the mask with Asuit ensures that only those voxels which define the
cerebellar structure are kept, and that the brainstem is excluded. The
resulting map is then morphologically filtered to remove isolated
voxels; i.e., a voxel is defined as isolated if it is not adjacent to any
other voxel within its 6-connected neighborhood in 3-D (see Fig. 2).
We denote the resulting mask with Mcbl and the binary values of this
mask with vi ∈ {0, 1}.

The resolution of Mcbl is 1 mm isotropic and needs to be
downsampled to the functional resolution. Therefore, we propose to
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Fig. 3. GM-adapted graph and wavelet design. (a) Structural scans of the subjects (top) and the SUIT template atlas (bottom) are used to construct (b) the cerebral (top) and cerebellar
(bottom) templateGMmasks,which are the basis for designing local structural connectivity subgraphsGcbr andGcbl, respectively. (c) Block diagonal Laplacianmatrix defining the spectrum
ofGgm. (d)Meyer-likewindowing functions h(ρSλ) and {g(ρsλ)}s = 1,2 at the lower end of the spectra ofGcbr andGcbl. A comparison of the two frames reveals the difference in the support of
the corresponding scaling (blue) and wavelet (green and red) kernels of the two subgraphs (indicated by the arrows and dashed lines). The gray colored vertical parallel bars along the
horizontal axis indicate the position of the eigenvalues within the spectral range. (e) Realizations of the GM-adapted wavelets localized at several different regions of the cerebrum (top
row) and the cerebellum (bottom row) overlaid onGM. Thefigures are color coded (blue and green) corresponding to the spectral designs shown in (d); i.e. blue:ϕj and green:ψ1, j, for six
different j denoting the indices of the graph vertices where the wavelets are localized. Note that although the wavelets diffuse within 3-D space, only images of a coronal slice are
illustrated.
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first filter the mask weighted with the probability map, using a moving
average 3-D box filter with window sizes approximating the functional
voxel size in each dimension, followed by thresholding (threshold value
0.5). In particular, the downsampled voxels are obtained as

v0i ¼ H
1
M

XM
m¼1

vmpm−0:5

 !
; ð18Þ

where H(∙) is the Heaviside step function andM denotes the number of
nearest neighbor voxels in the 1 mm mask required to interpolate the
downsampled voxel. The resulting mask is denoted withMd

cbl. A binary
cerebellar graph, denoted Gcbl , is then constructed by considering the
non-zero voxels in Md

cbl as vertices and assigning edges by computing
connections between adjacent voxels assuming 26-connectivity in 3-D,
see Fig. 2.

Cerebral graph design (Gcbr). The structural scans S j
� � J

j¼1 are segmented,
resulting in a set of GM probability maps, denoted with {Mj}j = 1

J . The
DARTEL iterative scheme of averaging and diffeomorphic registration
of the probability maps is incorporated to construct a GM template for
the group of subjects within the dataset. The algorithm converges after
several iterations, resulting in a detailed GM tissue probability template

at 1 mm resolution Mtmp, and a set of flow fields T j
� � J

j¼1 describing

the deformation required for mapping {Mj}j = 1
J to this template.
Mtmp is not necessarily aligned to the MNI coordinates, and, there-
fore, a second level of transformation to the MNI space is required.
Thus, M tmp is updated by subjecting it to an affine transformation
T tmp that registers it to SPM's GM tissue probability map. For reference,
we denote the thresholded (threshold value 0.5) and binarized version
ofMtmp withMcbr. After downsamplingMtmp to the functional resolu-
tion, a binary cerebral GMmask is created byfirst thresholding themask
(threshold value 0.5), followed by excluding those voxels that lie within
its intersection with Md

cbl. The mask is then morphologically filtered to
remove isolated voxels (6-connectivity in 3-D). The nonzero voxels in
the resulting mask are treated as graph vertices, and the edges are
defined with the same approach as described for the cerebellar case,
leading to a binary cerebral graph that we denote with Gcbr .

Gray matter adapted wavelet design
The constructed subgraphsGcbr andGcbl are disconnectedwithinGgm.

Thus, the corresponding full brain Laplacianmatrix Lgm is block diagonal
(Fig. 3(c)). Let Ncbr and Ncbl denote the number of vertices in each sub-
graph. As such, the eigenvectors of Lgm comprise two sets of distinct

basis χcbr
n

� �Ncbr

n¼1 and χcbl
n

� �Ncbl

n¼1, each separately spanning the cerebral
and cerebellar GM domains, respectively. A tight frame design is then
used to partition the spectral range of each subgraph and to allocate
the support of each wavelet scale. We choose g(∙) and h(∙) (cf. Spectral
graphwavelet transform (SGWT) section) such that the set of functionsψs;l;ϕl
� �

s∈S;l∈V forms a tight frame in ℓ2 Vð Þ (Leonardi and Van De Ville,
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(a) (b)

Fig. 4. Addressing inter-subject GM variability. The required transformations for normalizing the first level contrasts to the spaces of Gcbr and Gcbl, denoted T cbr; j
� � J

j¼1 and T cbl; j
� � J

j¼1, re-

spectively, are estimated based on transforming (a) the GM segmentations toMtmp and (b) the cerebellum structural scans to Ssuit , respectively. Note that the normalized structural data
(bottom row) are not directly used by tSMPsgwt, but rather the estimated transformations.
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2013). The tight frame construction is of importance as it leads to
energy conservation between the original and transformed domain
and enables an efficient inverse transform using the adjoint operator
(Benedetto and Fickus, 2003). Also, we prefer thewavelet kernels at dif-
ferent scales to function as scaled bandpass filters and the scaling func-
tion as a lowpass filter. Thus, we use the Meyer-like spectral wavelet
frame as proposed in Leonardi and Van De Ville (2013) (Appendix A).

Due to the large size of Ggm ,2 diagonalising Lgm is computationally
cumbersome. Therefore, we find it advantageous to use a polynomial
approximation scheme for estimating the scaled generating kernels
g(∙) (see Eq. (14)) by low-order polynomials as proposed in
Hammond et al. (2011). In doing so, the wavelet coefficients at each
scale are obtained by applying a polynomial of Lgm to the data, and
only an estimate of the range of the eigenvalues for each block of Lgm
is required. Lgm has two zero eigenvalues as both Gcbr and Gcbl are con-
structed such that their single connectivity is ensured and are, at the
same time, mutually disconnected. Thus, the lower spectral bound for
2 The construction ofGcbl is study-independent, and the resultingGcbl has 4465 vertices.
The size of Gcbr depends on the dataset used. Using the dataset used in this study (see Ex-
perimental dataset section) leads to aGcbr with 29,439 vertices, and thus, aGgmwith 33,904
vertices.
both Gcbr and Gcbl, i.e., λ1, is 0. However, their upper spectral bounds de-
pend on the complexity present in the GM structure of the respective
region, with a higher value expected for Gcbr due to its more intricate
geometrical detail. For Gcbl that is constructed to form a template that
is canonical in nature, the upper bound is fixed, i.e., λmax=1.4, whereas
it varies for Gcbr as it is constructed for each dataset separately. For the
dataset tested in this study (cf. Experimental dataset section), λmax =
1.6. This difference in upper bound, in turn, affects the support of the
cerebellar and cerebral frames in terms of the range and width of the
kernels, see Fig. 3(d). Fig. 3(e) shows several realizations of cerebellar
and cerebral GM-adapted wavelets constructed using the spectral ker-
nels shown in Fig. 3(d).

Functional data pre-processing & contrast mapping
The functional volumes are corrected for slice-timing and realigned

with the first acquired image. The head movement parameters are
then estimated and used as covariates in the design matrices {X1,j}. For
each subject, the structural volumes are co-registered with the mean
functional volume.

In order to reduce interpolation effects, all computations of the first
level analysis are done in the native subject space, thus, no normaliza-
tion is done on the functional data. Instead, the resulting first level
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Fig. 6. Transform-based SPM using GM-adapted spectral graph wavelets (tSPMsgwt).
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parameter maps P j
� � J

j¼1
3 are normalized, which leads to normalized

cerebral and cerebellar contrast maps denoted with Pcbr; j
� � J

j¼1 and

Pcbl; j
� � J

j¼1, respectively. The required transformations for this normali-

zation, denoted T cbr; j
� � J

j¼1 and T cbl; j
� � J

j¼1, respectively, are estimated

based on transforming the subjects' structural data to the respective
template domains.

Having designed Gcbr , the GM of each subject can be constructed
through warping Mtmp, using the inverse of the estimated flow fields

T j
� � J

j¼1 . Therefore, as the functional and structural volumes are co-

registered, applying the same transformation to the corresponding con-
trast maps results in their within-subject registration. As such, a better
overlap of effects can be gained for second level analysis, which can con-
sequently lead to increased statistical power. The same reasoning holds

for the cerebellum. T cbr; j
� � J

j¼1 are constructed by combining T j
� � J

j¼1

with T tmp (cf. GM-adapted graphs section). The cerebellar structure of
each subject is first annotated using a semi-automatic procedure, and
the transformation is determined by mapping it to the SUIT template
3 P j denotes the same first level parameter maps as pj given in Eq. (3) but in non-
vectorized format.
(Diedrichsen, 2006). The SUIT template is already defined in MNI space
and thus no extra transformations are required. Fig. 4 illustrates exam-
ples of the resulting normalized structural data after applying the nor-
malization transformations, both on the cerebrum and the cerebellum.

The co-registration and normalization procedures are crucial steps
in the proposed framework due to the requirement of a one-to-one cor-
respondence between the voxels of the functional and structural data as
the constructed graphs are based on anatomical data. Fig. 5 illustrates
the mapping of an fMRI contrast map to a graph signal. Note that only
those voxels of the contrast volumes with a graph vertex counterpart
are extracted, and their values are considered as elements of a signal
lying on the graph. The extracted contrast voxels from both the cere-
brum and cerebellum are vectorized, their SGWT is computed and the
resulting set ofwavelet coefficients are fed to transform-domainmodel-
ing. Fig. 6 illustrates an overview of tSPMsgwt.
Datasets

Experimental dataset

Data from 26 healthy adults performing a slow event-related
Eriksen flanker task were studied (Kelly et al., 2008). In each trial,
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the subjects used one of two buttons to distinguish between congru-
ent and incongruent trials (inter-trial interval varied between 8 s
and 14 s with a mean of 12 s). In congruent trials, the flanking arrows
pointed in the same direction as the central arrow (e.g., b b b b b),
whereas in more demanding incongruent trials the flanking arrows
pointed in opposite direction (e.g., b b N b b).

Functional data were acquired using a 3 T scanner, where contig-
uous whole-brain functional volumes were obtained using echo pla-
nar imaging during each of the two flanker task blocks (TE = 30 ms,
TR = 2000 ms, flip angle = 8°, matrix = 64 × 64, 40 slices, FOV =
192mm, voxel size= 3 × 3 × 4mm3, 146 volumes). T1-weighted an-
atomical scans were collected using an MPRAGE sequence (TE =
3.93 ms, TR = 2500 ms, flip angle = 8°, 176 slices, FOV = 256 mm,
voxel size = 30 × 20 × 10 mm3). Using this dataset, a cerebrum
graph Gcrb with 29,439 vertices was created.
Semi-synthetic dataset

To evaluate the proposed algorithm, a semi-synthetic group fMRI
dataset with known ground truth underlying simulated brain activi-
ty was created, using the anatomical scans of the 26 subjects of the
flanker task dataset. The dataset was created to account for inter-
subject variability in strength and location of the activity as well as
to simulate a realistic activity pattern. Functional contrasts with
known subject-specific ground truth activation patterns that diffuse
according to the GM of each subject were created as follows.

First, for each subject j, the estimated flow field T cbr; j (cf.
Functional data pre-processing & contrast mapping section) was ap-
plied to its GM probability map,Mj, resulting in a deformed-warped
Fig. 7. Realizations of synthetic activity patterns yj for
GM in MNI space. The resulting probability maps were then
smoothed (FWHM 2 mm), binarized by thresholding at 50%, leading
to a set of masks used to construct an unweighted graph for each
subject with adjacency matrices {Aj}j = 1

26 . Three 5 × 5 × 5 mm cubic
regions (125 voxels), two in the cerebrum and one in the cerebellum,
were then chosen as candidates for three activation centers. The cen-
ters were spatially jittered by randomly picking three voxels (one
from each region), creating a set of indicator vectors {xj}j = 1

26 defining
the voxel location of the three centers for each subject. An activation
pattern yj that diffuses from the three center points along the
individual's GM domain was constructed by consecutive application
of the corresponding adjacency matrix Aj to xj and confining the ele-
ments of yj to the range [0, 1] as

y j ið Þ ¼
1 if x0j ið ÞN1;ffiffiffiffiffiffiffiffiffiffi

x0j ið Þ
n
q

otherwise;

(
ð19Þ

where xj′ = Aj
nxj and n defines the extent of the diffusion (Fig. 7).

With this construction, not only do the patterns vary between sub-
jects, but also the distribution of their values. The resulting patterns
were downsampled to 3-mm resolution.

We treat these patterns as the ground truth first level contrasts
for the individual subjects (i.e., one pattern per subject). Using the
average of all 26 patterns, those voxels whose activity exceeded 0.5
and whose location corresponded to a voxel in Mtmp with at least
50% probability were defined as ground truth (Fig. 8(a)). The indi-
vidual activity patterns were then corrupted with additive white
Gaussian noise with variance σ2 = 1.
0

1

several subjects, overlaid on each subject's GM.
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Results

Setup and performance measures

For comparative purposes, we implemented SPM (isotropic Gauss-
ian smoothing with FWHM of 4 and 6 mm, denoted SPM4mm and
SPM6mm, respectively), and transform-based SPM using standard or-
thogonal wavelets (2-D + Z, redundant), denoted tSPMdwt, and GM-
adapted wavelets, denoted tSPMsgwt. SPM4mm was performed to illus-
trate the effect of smoothing on spatial accuracy and detail of detections.

For both datasets, we present the results in terms of the number of
detections. For the semi-synthetic data, we also present the number of
true positives (TP) and false positives (FP), and the receiver operating
characteristic (ROC) curve by varying p-values. Moreover, to indicate
the detections that lie outside the expected GM region where a BOLD
signal is expected, the detections are also categorized based on their
affinity to the underlying tissue; GM50 denotes a mask covering the re-
gions with a GM probability of at least 50%, i.e., greater than that of the
probability of being white matter (WM) or cerebrospinal fluid (CSF).
Thismetric provides an intuitive qualitymeasure of activationmapping,
especially for real data where the ground truth is not known. As an ini-
tial but reasonable approximation, detections that do not intersect with
GM50 can be assumed to be FPs.

Semi-synthetic data

Table 1 presents the results in applying the differentmethods on the
semi-synthetic data, when testing at a significance level of p b 0.05
familywise error (FWE) corrected. Both wavelet approaches have a sig-
nificantly better control over FPs (type-I error control) compared to
SPM6mm (95 and 183 vs. 1590 FPs). tSPMsgwt shows a significantly
higher sensitivity compared to tSPMdwt (1398 vs. 538 TPs). Although
SPM6mm also exhibits a higher sensitivity than tSPMsgwt (1785 vs.
1398 TPs), it lacks spatial accuracy (1590 vs. 183 FPs). For example,
the lack of spatial accuracy can be observed when comparing SPM6mm

and tSPMsgwt detections at coronal slices −34 to −25 in
Figs. 8(b)–(c), respectively, to the ground truth in Fig. 8(a).

Many SPM6mm detections are outside GM50 (approximately 30%).
The classification of FPs with respect to GM50 shows that the specificity
Table 1
Detection performance on the semi-synthetic dataset.

Method SPM4mm SPM6mm tSPMdwt tSPMsgwt

No. of detections — total 1882 3375 633 1581
No. of detections — in
GM50

1587 2429 566 1581

No. of TPs/(sensitivity) 1389/(73%) 1785/(94%) 538/(28%) 1398/(75%)
No. of FPs — total/
(specificity)

493/99.2% 1590/(97.4%) 95/(99.9%) 183/(99.4%)

No. of FPs — in GM50 198 644 28 183
of tSPMsgwt is higher than SPM6mm not only in total, but also when only
taking detections within GM50 into account (183 vs. 644 FPs). In other
words, the fine details detected by tSPMsgwt cannot be obtained by
intersecting SPM6mm detections with the GM50 mask. Note that
SPM6mm has 387 extra TPs than tSPMsgwt (i.e., 1785 − 1398), as com-
pared to 461 extra FPs within GM50 (i.e., 644 − 183), which indicates
less than random TP detection. This lack of detail in SPM6mm detections
ismainly due to the smoothing phase, though leading to higher sensitiv-
ity. By reducing the amount of smoothing, we observe that the sensitiv-
ities of SPM4mm and tSPMsgwt are similar (1389 vs. 1398 TPs) while
tSPMsgwt preserves its better specificity (493 vs. 183 FPs).

Fig. 9 shows ROC curves illustrating the specificity–sensitivity trade-
off of the approaches as a function of the significance level. At the same
level of specificity, tSPMsgwt consistently shows superior sensitivity
when compared to the other three approaches. Note that specificity of
both tSPMdwt and tSPMsgwt is confined to high values due to the inverse
inter-relation of the spatial and transform domain thresholds (i.e., τS

and τT ) that are inversely proportional (Van De Ville et al., 2004); as
the significance level input to the algorithm drops below α = 0.01,
a reasonable low enough limit, τT significantly decreases, leading to
an excess increase in τS , which in turn restricts detections and the
sensitivity.
Experimental data

Table 2 presents the results for theflanker taskdataset,where the in-
congruent active contrast was studied; i.e., detecting activations during
incongruent trials.4 All tests were performed at a significance level of
p b 0.05 FWE corrected. A first observation is that both SPM6mm and
tSPMdwt result in more detections than tSPMsgwt (9678 and 7707 vs.
7274 detections, respectively). However, restricting the detections to
GM50 within which tSPMsgwt functions, we see that tSPMsgwt outper-
forms both SPM6mm and tSPMdwt by 20% and 50% more detections, re-
spectively (7274 vs. 6165 and 4973 detections, respectively).

Figs. 10(a)–(b) show the detectionmaps using SPM6mmand tSPMsgwt,
respectively. tSPMsgwt detections exhibit more spatial details, as evi-
denced for instance by the subtle patterns observed in the left
and right upper cerebrocortical regions in slices −49 to −31.
Moreover, tSPMsgwt has better ability to detect connected pat-
terns — a result which is elucidated by re-plotting SPM6mm detec-
tions while keeping only those detections that fall within GM50,
see Fig. 10(c). Examples of this phenomenon can be observed by
comparing the detections in the cerebral cortex in slices −61 to
−31 in Figs. 10(b)–(c).
4 For each subject j, X1,j=[x1,j|x2,j|r1,j|r2,j|⋯ |r6,j, 1], where x1,j and x2,j are binary vectors
indicating the onset of congruent and incongruent trials, respectively, {xk,j}K = 1,⋯,6 are the
estimated head movement parameters used as additional regressors, and the last column
1 is a constant vector which models the average activity. c1 is set to [0, 1, 0,⋯, 0]T for de-
tecting voxels whose activation increase in response to incongruent trials.



Fig. 10. Experimental data. Activation maps detected by (a) SPM6mm and (b) tSPMsgwt. (c) Activations detected by SPM6mm that lie within GM50. All maps are overlaid onMtmp.
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With respect to detection sensitivity within GM50, tSPMsgwt in
general performs better with additional activations compared to
SPM6mm in several regions, see cerebellar region in slices −55 to
−34. It should also be noted that the detections of SPM6mm include
deep nuclei regions such as basal ganglia and thalamus, see
medial detections in slices −19 to −10 in Fig. 10(a), which are not



Table 2
Detection performance on the experimental dataset.

Method SPM4mm SPM6mm tSPMdwt tSPMsgwt

No. of detections — total 5963 9678 7707 7274
No. of detections — in GM50 4182 6165 4973 7274
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part of the graph definition of tSPMsgwt and thus, remain undetected by
tSPMsgwt.
Discussion

Improved spatial localization and empirical sensitivity

The enhanced spatial localization for tSPMsgwt compared to that of
tSPMdwt and SPM is due to several reasons. First and foremost, prior
knowledge about how and where the BOLD signal emerges is taken
into account advantageously. WM is an example of a tissue with very
low neuro-vascular coupling due to its sparse vascularization, which
implies a weak or absent BOLD signal within WM (Logothetis and
Wandell, 2004). As such, exploiting this prior knowledge about tis-
sue–function relationship is essential. The prevention of detections in
WM or CSF, which would be mainly driven by noise, also prevents
these contributions from penetrating and getting mixed with the func-
tional signal in GM. Although even within SPM, statistical analysis can
be restricted to a subset of the voxels corresponding to GM, data still
needs to be smoothed in order to be sufficiently in line with the Gauss-
ian random field theory (Poline et al., 1997). Secondly, compared to
SPM, there is no irreversible spatial smoothing of the functional data
inwavelet approaches, which in turn results in enhanced spatial accura-
cy in detecting subtle activity patterns. The conventional approach of
spatial smoothing with a non-adaptive Gaussian filter trades increased
sensitivity for loss of information on the spatial extent and shape of
the activation areas (Jo et al., 2008; Mikl et al., 2008). It has also been
shown that isotropic Gaussian smoothing across GM and WM
(i.e., without any GM constraint) can lead to displacement of activation
peaks in t-value maps towards WM due to the difference in noise vari-
ance of the two tissue types (Reimold et al., 2006). Thirdly, the strong
-68-68

-56

-48-48

-56

(a) (b)

Fig. 11. Template cerebellar GM. Three coronal slices of (a) Msuit constructed using SUIT
template and (b) the cerebellar region ofMtmp constructedusing DARTEL. Finer spatial de-
tail is observed inMsuit than inMtmp.
control of FPs using tSPM is linked to the underlying theory in selecting
the threshold values through the bound over the null hypothesis rejec-
tion probability (Van De Ville et al., 2004). On the other hand, SPM
yields FWE rates that are higher than the expected one, as recently re-
ported in Eklund et al. (2012). This effect is decreased by reducing the
amount of smoothing, as was observed when using SPM4mm.

Fixing the desired significance, we observe that tSPMsgwt outper-
forms SPM and tSPMdwt in terms of sensitivity, see Fig. 9. Although the
use of classical wavelets has shown good sensitivity in single-subject
studies (Van De Ville et al., 2004, 2007), it performs worse in group
studies due to inter-subject variability that is not countered by smooth-
ing as in SPM, in particular, when there is only partial overlap between
activations. Moreover, although the approach is multi-resolution, the
wavelets dilate along the axes of the Cartesian coordinate system at a
scale progression that is too fast. Instead, GM-adapted wavelets lead
to much higher sensitivity compared to classical wavelets (i.e., 1398
vs. 483 detections, respectively) thanks to the adaptive scaling of wave-
lets that respect the GM domain. Moreover, empirical assessment of
sensitivity on real data, by considering detections within GM50, reflects
the higher sensitivity of tSPMsgwt compared to both tSPMdwt and SPM
(see Table 2 and Fig. 10). Designing basis functions that dilate onlywith-
in GM, not only prevents high noise data fromWMor CSF to be “mixed”
with GMdata, but also leads to amore significant overlap of pure activa-
tions that followGM foldings, which in turn, results in higher sensitivity.

Graph design for the brain

A binary graph design is adopted in the proposed framework. Our
preliminary tests showed that weighting the edges based on the
Euclidean distance does not improve the results, as the Euclidean
distances between connected vertices in an isotropic 3-D grid are in
the same range ( 1;

ffiffiffi
2

p
or

ffiffiffi
3

p
voxels, see Fig. 2). Also, defining

weights based on GM probabilities did not improve the results (Behjat
et al., 2014). Thus, the binary design was favored over an edge
weighting scheme due to its simplicity. This construction resembles an
E -neighborhood graph commonly used in spectral clustering (Von
Luxburg, 2007), with E equal to a distance of

ffiffiffi
3

p
voxels.

There are two main reasons why the design of a graph with region-
specific subgraphs was preferred over the design of a single connected
brain graph. First, the importance of separating the cerebrum from the
cerebellum is to prevent activations from the ventral occipital lobe
“bleeding” into the cerebellum, and vice versa. Examples of this phe-
nomenon can be observed in SPM detections, see slices −70: −49 in
Fig. 10(a). Second, the geometrical properties of the GM are different
for the cerebrum and the cerebellum. At the resolution of currently
available structural MRI scans and segmentation algorithms, there are
more fine details observedwithin thewhole range of the cerebral struc-
ture than within the more coarse geometry of the cerebellum. As such,
constructing subgraphs specific to the cerebrum and cerebellum leads
to wavelets specifically designed for each region, as the wavelet frame
is based on their corresponding spectra.

By comparing the cerebellar mask Msuit to the cerebellar region of
the average GM map T tmp, it can be observed that more spatial detail
is preserved within the former, see Fig. 11. Moreover, the use of such a
template mask leads to a study-independent canonical GM graph,
with advantages similar to those of the SUIT atlas itself. The GM tem-
plate constructed from SUITwas therefore preferred over the cerebellar
region of Mtmp.

Comparison with other anatomically constrained methods

Previous studies following CSM approaches (Andrade et al., 2001;
Chung et al., 2005; Hagler et al., 2006; Qiu et al., 2006), which anatom-
ically constrain the activationmapping, suffer from a few shortcomings.
First, the interpolation effects related to the projection of 3-D volumes
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onto the cortical surface is a major challenge (Grova et al., 2006; Operto
et al., 2008). Second, smoothing leads to spatial inaccuracy and artificial
shift of activations, be it using conventional volume-based approaches
(e.g., SPM) or CSM (Jo et al., 2007, 2008; Mikl et al., 2008). Although
the cortical 2-D diffusion smoothing of CSM approaches, rather than
3-D isotropic Gaussian smoothing of conventional volume-based ap-
proaches, prevents overlap of activation centers that are geodesically
distant but close in a Euclidean sense (e.g., two points, at the opposite
sides of a sulcus) (Andrade et al., 2001), the resulting smoothed signal
can still be influenced by sources that are geodesically adjacent. tSPM-
sgwt overcomes these two limitations by not smoothing the data in the
first place and keeping the analysis within the native voxel-space. By
modeling the GM as a graph based on the local neighborhood structure,
we implicitly define a manifold (with non-zero thickness) on which
wavelets dilate with respect to geodesic distances on this structure. In
this sense, the design allows upscaling of local properties to a global
scale. At the coarse scale, although tSPMsgwt also implicitly inherits
smoothing in applying the lowpass scaling function h(∙) that can be
interpreted as equivalent to Gaussian pre-filtering (Van De Ville et al.,
2003), this is fundamentally different from pre-smoothing the data.
First, the scaling coefficients are thresholded leading to non-linear
denoising as opposed to the linear filtering done in pre-smoothing
where all fine details of the data, be it noise or signal, are removed,5

which in turn, leads to a loss in spatial detail of the underlying activity
patterns. Second, the wavelet coefficients that survive thresholding
are then used, together with the scaling coefficients, to reconstruct the
de-noised signal, unlike the irreversible pre-smoothing as in CSM or
SPM.

It is interesting to compare tSPMsgwt with the AIBF approach (Kiebel
et al., 2000; Kiebel and Friston, 2002). First, both approaches keep
modeling in the spatial and temporal domain separated. However, tem-
poral modeling precedes spatial modeling in tSPMsgwt, i.e., spatial
modeling is deferred to the second level analysis (cf. Transform-based
SPM (tSPM) section), whereas the opposite is performed in AIBF. If sin-
gle subject analysis similar to the current graph-based proposal is de-
sired; i.e., only first level analysis, the original joint spatio-temporal
model of WSPM as proposed in Van De Ville et al. (2004) can be used
(Behjat et al., 2013). Second, tSPMsgwt shares similarities with AIBF in
the sense that smoothing of the data is prevented. They both project
the data into a transform domain: AIBF to the space spanned by circular,
user-specifiedwide Gaussian basis functions with local support defined
on the flattened cortical surface, and tSPMsgwt to a multi-scale GM do-
main spanned by GM-adapted wavelets defined within the voxel-
space. The basis set is then used to represent, by a linear combination,
the functional observations (BOLD volumes in AIBF and first level con-
trast maps in tSPMsgwt). In tSPMsgwt, the modeling is done within the
wavelet domain, whereas in AIBF it is done in the voxel-space by
back-projecting the constructed basis to the voxel-space. As such, AIBF
is also prone to interpolation effects in back-projecting the basis from
the cortical surface to the voxel-space, similar to that explained earlier
with respect to mapping functional data from the voxel-space to the
surface. Third, in tSPMsgwt denoising is performed by subjecting the
wavelet coefficients to a threshold (cf. Transform-based SPM (tSPM)
section) and applying the inverse transform to project the data back
to the native space, whereas in AIBF noise reduction is inherent in the
anatomically constraint least-squares modeling. Fourth, in multi-
subject AIBF (Kiebel and Friston, 2002), a single subject's cortical surface
is used as a canonical surface to construct the basis set and to normalize
functional data from all subjects. Here, we made use of recent
population-level template atlas constructions as well as deformation
algorithms to construct a group-level template of GM, in an attempt to
5 Note that the Fourier transform of a Gaussian is also a Gaussian, and thus, applying
such a Gaussian filter to the data corresponds tomultiplying the spectrumof the datawith
a Gaussian.
address the observed inter-subject variability of GM structure more
elegantly (see Fig. 4).

Another limitation of surface-based approaches is their inability to
analyzenon-cortical regions, such as the cerebellumand thedeep nuclei
(e.g., thalamus and basal ganglia), as they require a surface reconstruc-
tion, which would necessitate additional and tailored representation
steps. As such, volumetric techniques, such as the present proposal,
allow more easily to include non-cortical structures.

We also mention an alternative design of anatomically adaptive
wavelets proposed in Ozkaya and Van De Ville (2011) and Ozkaya
(2012). The design is based on the lifting scheme (Sweldens, 1996)
where an irregular domain can be iteratively sectioned into a nested
family of partitions at different spatial scales. As such, the basis con-
struction in Ozkaya (2012) becomes shift variant (due to subsampling),
while the wavelet basis in SGWT spans the space of eigenfunctions of L
that are defined on the GM domain. Moreover, our approach has been
directly devised for multi-subject analysis and as such addresses inter-
subject GM variability. As both proposals use the segmented GM as
the starting point for their construction, the lifting-based anatomically
adapted wavelets can also benefit from the GM template as proposed
in the present study.
Limitations

Although we have shown the applicability of tSPMsgwt in enhancing
fMRI activation mapping, there are still aspects that can be improved.
The present framework lacks a systematic approach in determining
the spectral coverage for each wavelet scale; this is a limitation for the
SGWT design in general, as also reported in other applications than
fMRI (e.g., Kim et al., 2014; Li and Hamza, 2013). The adopted spectral
partitioning in the design has been found empirically by visual assess-
ment of the wavelets and their characteristic scale. The current setting
should nevertheless reasonably generalize to other datasets due to the
general similarity in the extent and nature of the resulting group-level
template GM domains.

Another limitation is that sub-cortical regions, such as the basal
ganglia and thalamus, are currently not part of the graph. As such, sev-
eral detections by SPM in the sub-cortical areaweremissed by tSPMsgwt

(cf. Experimental data section in Results). Although there is a precise
atlas of deep cerebellar nuclei available (Diedrichsen et al., 2011), there
does not seem to exist a detailed population-level atlas (mask) for the
sub-cortical nuclei such as the thalamus and pallidum. Available atlases
such as the AAL atlas (Tzourio-Mazoyer et al., 2002) are based on a single
subject anatomy, and, when incorporated within our GM template, re-
gions for the sub-cortical nuclei were too coarse and collapsed with the
nearby delicate GM structure as defined by Gcbr. Therefore, these
regionswere decided not to be included in the current graph design. Pro-
vided a suitable atlas becomes available, it should be possible to include
these regions as extra subgraphs to Gb. Another option is to incorporate
tractography information provided by diffusion tensor imaging data (Le
Bihan et al., 2001). A similar idea in constructing such hybrid connectivity
graphs has been recently proposed to improve electroencephalography-
based source estimation (Hammond et al., 2013).

The computational burden of the proposed approach is another
potentially limiting factor. The most costly part of the implementation
is the absolute-value wavelet reconstruction needed for the spatial
thresholding (cf. denominator of Eq. (10)). Since the graph wavelets
are unique, they need to be computed explicitly at each and every
vertex and scale. Although this computational burden can be
reduced by pre-computing and storing the absolute-value-wavelets

f; jψs;lj; jϕljgSs¼1

n oNcbl

l¼1
for Gcbl , this should still be done for each study-

dependentGcbr. Another possibilitywould be to perform the reconstruc-
tions in parallel on the computer's graphic card, as such applicability has
been shown for other fMRI analysis procedures (Eklund et al., 2013).
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Extension to structural studies

Another research avenue that can directly benefit from the proposed
GM-adapted wavelet construction are structural studies. Euclidean
wavelet approaches have been used to classify structural brain data
(Canales-Rodriguez et al., 2013; Lao et al., 2004) as a means to assess
structural morphometric differences between different populations of
subjects. They have also been used to discriminate between healthy
and pathological tissue by characterizing subtle changes in brain struc-
ture in a variety of diseases such as Alzheimer's disease, mild cognitive
impairment and multiple sclerosis (Hackmack et al., 2012; Harrison
et al., 2010). Interestingly, the recent proposal in Kim et al. (2014),
also uses the SGWT to derive multi-scale shape descriptors that can be
used to detect group-level effects. However, the approach uses cortical
surface reconstructions, and as such, it comes with benefits and limita-
tions of interpolation between the surface and volume as we discussed
earlier. Nevertheless, the approach can be easily extended using the
proposed volumetric GM graph and wavelet design.

Conclusion

We have extended fMRI activation mapping based on spatial multi-
scale transforms to exploit the geometrical structure of the GM.We lev-
eraged recent advances in graph-based wavelet design to incorporate
this prior knowledge in the transformation. The procedure included
the construction of a GM-adapted graph, including different subgraphs
for cerebral and cerebellar regions. The wavelet-based SPM framework
was presented to incorporate any linear spatial transform, including the
spectral graph wavelet transform. Experimental and simulated results
showed the potential of the proposed approach in terms of improved
specificity and sensitivity for multi-subject studies, and to reveal fine-
grained activity patterns.

Software

The source code of the proposed method will be made available to
the community at miplab.epfl.ch/software/.
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Appendix A. Tight spectral graph Meyer-like wavelet frame

An example of tight graph wavelet frame can be constructed by
defining Meyer-like wavelet and scaling kernels in the spectral graph
domain as (Leonardi and Van De Ville, 2013)
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respectively, where M denotes the dilation factor and is set by q ∈ ℤ as
M ¼ qþ1

q , a=(q− ϵ)b, ϵ∈]0, (1+M)−1] and a, b ∈ℝ+. The classical dy-

adic dilation corresponds toM = 2. The J wavelet scales are defined as

t j ¼ a
λmax

M j
n o

j¼1;…; J
. The resulting construction leads to a set of kernels

where the support of each kernels is a strict subset of the eigenvectors of
L (i.e., bandpass filters), and the union of the functions |g(tjλ)|2 and
|h(tJλ)|2 forms a partition of unity, i.e., ∑j = 1

J |g(tjλ)|2 + |h(tJλ)|2 = 1.
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