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ABSTRACT

Non-invasive characterization of brain structure has been
made possible by the introduction of magnetic resonance
imaging (MRI). Graph modeling of structural connectivity
has been useful, but is often limited to defining nodes as
regions from a brain atlas. Here, we propose two methods
for encoding structural connectivity in a huge brain graph
at the voxel-level resolution (i.e., 850’000 voxels) based on
diffusion tensor imaging (DTI) and the orientation density
functions (ODF), respectively. The eigendecomposition of
the brain graph’s Laplacian operator is then showing highly-
resolved eigenmodes that reflect distributed structural fea-
tures which are in good correspondence with major white
matter tracks. To investigate the intrinsic dimensionality of
eigenspace across subjects, we used a Procrustes validation
that characterizes inter-subject variability. We found that the
ODF approach using 3-neighborhood captures the most in-
formation from the diffusion-weighted MRI. The proposed
methods open a wide range of possibilities for new research
avenues, especially in the field of graph signal processing
applied to functional brain imaging.

Index Terms— brain graph, eigenmodes, diffusion tensor
imaging, orientation density functions

1. INTRODUCTION

Diffusion-weighted magnetic resonance imaging (DW-MRI)
allows for in vivo visualization of the diffusion of water
molecules in neural fibers, thereby revealing the underlying
brain structure. Conventionally, various signal reconstruction
techniques as well as tractography algorithms [1, 2] are used
to derive white matter streamlines that connect the different
cortical and subcortical regions of the brain [3].

Viewed under the lens of graph theoretical approaches,
distinct brain regions are usually represented as graph ver-
tices. The graph edges and their associated weights encode
the strength of the association among regions [4–9], either
based on physical strength of the connections or the degree of
their functional interplay. Whether it is a functional or struc-
tural graph, one often limits the study in region-wise analysis

by averaging the neural activity or the number of fibers con-
necting brain regions that are specified by an a priori atlas.
Two limitations can be seen in such analysis. First, the analy-
sis is drastically affected by the choice of parcellation scheme.
It also merely provides a macro-scale view of structural or
functional connectivity. Second, the analysis on structural
brain graphs varies depending on the algorithm employed to
approximate the number of white matter (WM) tracts, and
while they do reconstruct tractograms that are present, most of
them also produce a significant amount of false positives [11].

In order to overcome these limitations, we propose to
build a brain graph that is defined at a voxel-level resolu-
tion. Doing so would not require the use of any parcellation
schemes and tractography algorithms, and instead built di-
rectly from the reconstructed diffusion data. We present two
design schemes, one using DTI data and the other using ODF
data. The ODF design is explored using two levels of neig-
borhood connectivity principle, namely, 3 and 5 connectivity
in 3D. We show, for the first time, highly resolved human
brain eigenmodes that recover major white matter tracks. The
Laplacian spectra of the resulting graphs are compared to
determine which design maximally encodes diffusion data.

2. METHODS

Similar to classical brain graphs, we define a brain graph as
Gvw := (V,A), where V = {1, 2, 3, ...,N } is the set of N
nodes representing the brain voxels, and A ∈ N × N is an
adjacency matrix encoding the connection strength between
neighboring voxels. The specific definition of neighboring
voxels depends on the type of signal reconstruction being con-
sidered.

2.1. DTI-based brain graph

In DTI, the fiber orientation at a voxel is described by an el-
lipsoid defined by a real symmetric 3 × 3 matrix T called
the diffusion tensor. The displacement probability of water
molecules at a given time can then be approximated by a mul-
tivariate Gaussian with the diffusion tensor as the covariance
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Fig. 1. (A) Filter coefficients obtained by discretizing the representative tensor shown; (B) adapts Itturia-Medina’s original
figure [10] illustrating the solid angle βij around the vector rij , while (C) visualizes DTI data through ellipsoids, and the
corresponding voxel-wise brain graph (y = 87).

matrix, given by [12]:

P (�ri, ti) ==
1√

4πti
3|T|

exp(− �ri
TT−1�ri
4t

), (1)

where �ri and ti translate to the direction at a specific voxel
and timepoint being considered. We used a cubic lattice of
size 3× 3× 3 Moore neighborhood to define the nodes of our
brain graph, so that each node is connected up to a maximum
of 26 nearest neighbors. The calculation of the equivalent
weights requires a discretization step that guarantees a one-to-
one mapping between the (continuous) multivariate Gaussian
model and the (discrete) weighting of vertices in the brain
graph. This is done by assigning a cubic FIR filter in each
voxel, defined as h(k), and obtaining the filter coefficients
that are equivalent to the diffusion ellipsoid that is modeled by
Equation 1. We specify h(k) in terms of its transfer function
as

H(z) =
∑
k

h(k)z−k (2)

where zk is equivalent to
∏i=M

i=1 zki
i , with M = 3. The one

to one mapping from the continuous domain to the discrete
domain is achieved by matching equations 1 and 2 in their re-
spective frequency domain representation. Fundamental sig-
nal processing concepts allow us to do the matching by not-
ing that the Z-transform is essentially a discrete version of the
Fourier transform (FT) if we set the real part of the complex
variable to zero. Under the same frequency representation,
we can expand in terms of their Taylor series approximation,
and obtain the filter coefficients by matching the coefficients
of the lowest order terms. The filter coefficients are normal-
ized in each voxel and are multiplied with the correspond-
ing fractional anisotropy (FA) in order to boost the structure
of the graph. For each voxel i in the brain, we encode the

discrete counterpart of the diffusion ellipsoid onto the brain
graph, noting that Ai,j is given by the average of two coincid-
ing filter coefficients coming from voxels i and j. An example
of a discretized ellipsoid is shown in Fig. 1(A) and a visual-
ization of DTI ellipsoids and their corresponding voxel-wise
brain graph for a representative coronal slice in Fig. 1(C).

2.2. ODF-based brain graph

We used an ODF-based weighting scheme that leverages pre-
vious work presented by Itturia-Medina [10, 13]. Let Ni de-
note the set of vertices in V that are adjacent to vertex i. For
any two vertices i, j ∈ V , let �rij denote the vector pointing
from the center of vertex i to the center of vertex j. Let Oi(S)
denote the ODF associated to voxel ri, with its center of co-
ordinate being the center of the voxel. We can then define

p(i, �rij) =

∫
βij

On
i (S)dS (3)

as the probability of the nerve fibers being oriented along
direction �rij . The variable n is a positive integer that is a
desired power factor to sharpen the ODFs, and βij denotes
a solid angle of 4π/98 (for 5-neighborhood, 4π/26 for 3-
neighborhood) around �rij subtended at the center of voxel
ri (see Fig. 1(B)). Let {Oi,k}No

k=1 denote the discrete samples
of Oi(S) along No directions {�rk}No

k=1 from the center of the
ODF. Thus, p(i, �rij) can instead be approximated as a sum

p(i, �rij) ≈ 4π

No

∑
k∈Di,j

On
i,k, (4)

where Di,j : {k | �rk ∈ βij}. The final weights of the brain
graph are computed by taking into account the strength of the
anisotropy of the nodes ri and rj and the ODF’s orientation
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Fig. 2. Human brain eigenmodes of a representative subject corresponding to the top 3 lowest frequencies, produced by brain
graphs constructed using 3-neighborhood DTI and 3 and 5-neighborhood ODF.

p(i, �rij). Mathematically,

Ai,j = Pmag(ri)p(i, �rij) + Pmag(rj)p(j, �rji) (5)

where Pmag(ri) is defined as

Pmag(ri) =
QA2

2maxl∈Nk
p(k, �rkl)

(6)

where QA is the anisotropy index called the quantitative
anisotropy that is originally defined by Yeh et. al [14], and the
denominator is a normalization term for p(i, �rij). Whereas
Itturia-Medina [10] has defined a parameter based on tissue
probability maps to describe the magnitude of the anatomical
information, we propose to use QA, synonymous to FA in
DTI. In particular, ODF provides the directionality (shape) of
the diffusion, while the squared QA provides the magnitude
(energy). By nature of the design of the ODF brain graph, we
can choose to use a 3 × 3 × 3 or a 5 × 5 × 5 neighborhood,
depending on the solid angle β that we consider. The 5-
neighborhood intuitively offers a more resolved connectivity
information, whereas the 3-neighborhood is more localized.

3. RESULTS

We constructed and evaluated three different brain graphs: (i)
the 3-neighborhood DTI-based (DTI-3), (ii) the 3-neighborhood
ODF-based (ODF-3) and (iii) the 5-neighborhood ODF-based
(ODF-5) graph. A fourth graph with randomly assigned edge
weights, using a Gaussian noise, is constructed and treated
as a null for comparing and evaluating the brain graphs. The
brain graphs are constructed within the native space where
diffusion data were acquired, and it includes all voxels from

all tissue types, i.e., gray matter (GM), white matter and the
cerebrospinal fluid (CSF).

To capture the topology, we consider the graph Lapla-
cian matrix in its symmetric normalized form Lsym =

D1/2LD1/2. The eigendecomposition of Lsym leads to a
complete set of orthonormal eigenvectors that span the graph
spectral domain and of N real, non-negative eigenvalues.
The number of nodes typically range around 700-900 thou-
sand for the whole brain graph, and as such, the dimension
poses significant computational challenge. The present proof-
of-concept analysis was therefore confined to the first 1000
eigenvectors corresponding to the lowest spectral frequencies,
estimated using the Krylov–Schur Algorithm [15].

The diffusion is inherently anisotropic in the WM in con-
trast to being isotropic in GM and CSF. This is reflected in
Fig. 2 which illustrates the first three eigenmodes of the three
brain graphs. Major WM structures clearly dominate the
overall spatial pattern, indicating that the distinction between
tissue types naturally arises from the assignment of the con-
nectivity weights in the brain graph. The second and third
eigenmodes show geometrical information of the head shape,
dividing the brain into posterior and anterior, and left and
right, respectively, while higher frequency eigenmodes show
more spatial variability and more localized information.

By nature of the reconstruction models, ODFs are ex-
pected to recover more details, especially in crossings and
branching fibers. However, as it is shown in Fig. 2, it is not
easy to qualitatively pinpoint the differences of the approach
through visual inspection. In order to characterize the differ-
ences in their topology, we look at the general trend of the
eigenmodes in a population of 20 subjects from the Human
Connectome Project (HCP) [16] database.
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Fig. 3. (A) Cosine similarity of the first 300 eigenmodes
of two representative subjects before (left) and after (right)
Procrustes transform, where we see traces of flipped signs
and unordered eigenmodes before applying the transforma-
tion. The curve in (B) summarizes the Procrustes error cal-
culated by summing up off-diagonal values in all pair-wise
cosine similarity matrices. The ODF-3 shows the highest pro-
crustes error, while the DTI and ODF-5 tied for second.

3.1. Procrustes validation

If the application calls for a group-level analysis, normaliza-
tion using DARTEL [17] is suggested so that the deformation
templates are specific to the group being analyzed. The
eigendecomposition of the Laplacian returns subject-specific
eigenmodes that are not necessarily in the same order with
other subjects. To solve this, we used Procrustes trans-
form [18] to flip the signs of the eigenmodes and re-order
them accordingly. After an iterative Procrustes transforma-
tion, we obtain an averaged set of human brain eigenmodes
representative of the population considered.

To examine the efficiency of the Procrustes transforma-
tion, we applied a cosine similarity measure to all pair-wise
combination of subjects, see Fig. 3(A). Traces of flipped
signs and unordered eigenmodes are observed before Pro-
crustes transformation. Each set of eigenmodes contains
subject-specific structural information, and while the Pro-
crustes transformation matches similar eigenmodes, it can-
not account for inherent inter-subject variability. Therefore,
off-diagonal errors in the similarity matrix reflect these dif-
ferences. We ran bootstrap methods to successively apply
Procrustes transformation on a subset of 15 out of the total of
20 subjects. We examined the cosine similarity errors for in-
creasing number of eigenmodes as is shown in Fig. 3(B). By

summing up all off-diagonal values in the cosine similarity
matrices, computed multiple times (with replacement) from
all 20 subjects, we computed an error term, denoted Pro-
crustes error. We found all four graphs showing a decreasing
L-curve, having knee-points at around k = 300 and reaching
that of the null upon reaching higher k-values, suggesting that
only the top 300 eigenmodes show relevant structure. The
ODF-3 graph shows the highest procrustes error, while the
DTI-3 and and ODF-5 graphs tied on the second spot, sug-
gesting that the ODF-3 graph recovered the highest amount
of information from the diffusion data.

4. CONCLUSION

Two design schemes for constructing voxel-vise brain graphs
based on DTI and ODF were presented. The approach ex-
tends a previously proposed brain graph design limited to the
GM [19,20], and a modified and improved versions of Itturia-
Medina’s ODF-based brain graph [10, 13]. The brain graphs
are constructed within the native diffusion space and have
nodes covering the entire brain, including GM, WM and CSF.
Thus, there are no coordinate transformation nor segmenta-
tion processes involved, making the brain graph more reliable
and subject-specific. The decomposition of the Laplacian
produced highly resolved human brain eigenmodes show-
ing structural features that are in good correspondence with
known major white matter bundles. Moreover, through a Pro-
crustes validation scheme that is able to reflect inter-subject
differences, we found that the 3-neighborhood ODF-based
brain graph is better than the DTI-based owing to the fact that
DTI is a much simpler model making it unable to reconstruct
fiber crossings and branching patterns. Furthermore, we sur-
mise that although the 3-neighborhood and 5-neighborhood
ODF come from the same reconstruction method, the use of
a higher-neighborhood scheme reduces the amount of infor-
mation captured due to increased complexity and the possible
inclusion of distant connections.

From a neuroscience perspective, the introduction of
voxel-wise brain graphs opens a wide-range of new possibil-
ities for the study of the brain. In the structural perspective
alone, brain eigenmodes have been found as an effective
biomarker for distinguishing healthy and diseased [8]. More-
over, brain eigenmodes have also been introduced as a build-
ing block for the human connectome [9] and cortical neural
activity can be decomposed into frequency-specific modes.
Similar to this, our method has the potential to extend the
exploration not only in the cortex, but in the whole brain at
a very high resolution. With the rising use of graph signal
processing (GSP) in the field [5–7], this approach can propel
studies aiming to understand how the dynamics of neural
processes relate to the underlying fixed anatomical structure.
The key is to define the functional data as signals residing
in the voxel-wise brain grid, so that various GSP operations
(e.g., filtering, signal inpainting) can then be tailored and
explored according to the research question.
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